Sources: Before the Phanerozoic
*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Before the Phanerozoic:
>Siegel, E. (2019, October 22). What Came First: Inflation Or The Big Bang? Forbes. https://www.forbes.com/sites/startswithabang/2019/10/22/what-came-first-inflation-or-the-big-bang
>Siegel, E. (2018, November 17). Ask Ethan: Are quantum fields real? Forbes. https://www.forbes.com/sites/startswithabang/2018/11/17/ask-ethan-are-quantum-fields-real
>Siegel, E. (2020, October 9). Ask Ethan: When Did The Universe Get Its First Quantum Fields? Forbes. https://www.forbes.com/sites/startswithabang/2020/10/09/ask-ethan-when-did-the-universe-get-its-first-quantum-fields
>Our solar system. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/solar-system/our-solar-system/in-depth
>Tavares, F. (2022). Collision may have formed the moon in mere hours, simulations reveal. NASA. https://www.nasa.gov/feature/ames/lunar-origins-simulations
>Gough, E. (2022, March 9). How did Earth go From Molten Hellscape to Habitable Planet? - Universe Today. Universe Today. https://www.universetoday.com/154874/how-did-earth-go-from-molten-hellscape-to-habitable-planet
>Miyazaki, Y., & Korenaga, J. (2022). A wet heterogeneous mantle creates a habitable world in the Hadean. Nature, 603(7899), 86–90. https://doi.org/10.1038/s41586-021-04371-9
>Palus, S. (2014, April 21). Venus’ crust heals too fast for plate tectonics. Ars Technica. https://arstechnica.com/science/2014/04/venus-crust-heals-too-fast-for-plate-tectonics
>Bercovici, D., & Ricard, Y. (2014). Plate tectonics, damage and inheritance. Nature, 508(7497), 513–516. https://doi.org/10.1038/nature13072
>Stern, R. S., Gerya, T., & Tackley, P. J. (2018). Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(1), 103–119. https://doi.org/10.1016/j.gsf.2017.06.004
>Cooper, K. (2022, November 21). Vast volcanic eruptions may have turned Venus from paradise into hell. Space.com. https://www.space.com/venus-volcano-eruptions-large-igneous-province
>Way, M. O., Ernst, R. E., & Scargle, J. D. (2022). Large-scale volcanism and the heat death of terrestrial worlds. The Planetary Science Journal, 3(4), 92. https://doi.org/10.3847/psj/ac6033
>SwRI-led team finds ancient, high-energy impacts could have fueled. (2023, July 20). Southwest Research Institute. https://www.swri.org/press-release/swri-led-team-finds-ancient-high-energy-impacts-could-have-fueled-venus-volcanism
>Marchi, S. (2023). Long-lived volcanic resurfacing of Venus driven by early collisions. Nature. https://doi.org/10.1038/s41550-023-02037-2
>Kuta, S. (2023, March 17). Scientists spot recent volcanic activity on Venus. Smithsonian Magazine. https://www.smithsonianmag.com/smart-news/scientists-spot-recent-volcanic-activity-on-venus-180981831
>Herrick, R. R., & Hensley, S. (2023). Surface changes observed on a Venusian volcano during the Magellan mission. Science, 379(6638), 1205–1208. https://doi.org/10.1126/science.abm7735
>Gronstal, A. (2019, June 11). NASA Astrobiology. https://astrobiology.nasa.gov/news/in-search-of-an-ancient-global-magnetic-field-on-venus/
>In depth | Venus – NASA Solar System Exploration. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/planets/venus/in-depth
>NASA Astrobiology. (n.d.). https://astrobiology.nasa.gov/news/in-search-of-an-ancient-global-magnetic-field-on-venus/
>O’Rourke, J., Buz, J., Fu, R. R., & Lillis, R. (2019). Detectability of remanent magnetism in the crust of Venus. Geophysical Research Letters, 46(11), 5768–5777. https://doi.org/10.1029/2019gl082725
>Bernstein, J. (2022, April 20). Why Venus rotates, slowly, despite sun’s powerful grip. News. https://news.ucr.edu/articles/2022/04/20/why-venus-rotates-slowly-despite-suns-powerful-grip
>Kane, S. R. (2022). Atmospheric dynamics of a near tidally locked Earth-sized planet. Nature Astronomy, 6(4), 420–427. https://doi.org/10.1038/s41550-022-01626-x
>Nield, D. (2016, October 26). Why Are Venus And Uranus Spinning in The Wrong Direction? : ScienceAlert. ScienceAlert. https://www.sciencealert.com/why-are-venus-and-uranus-spinning-in-the-wrong-direction
>Ingersoll, A. P., & Dobrovolskis, A. R. (1978). Venus’ rotation and atmospheric tides. Nature, 275(5675), 37–38. https://doi.org/10.1038/275037a0
>Tidal Locking | Earth & Tides – Moon: NASA Science. (n.d.). Moon: NASA Science. https://moon.nasa.gov/moon-in-motion/earth-and-tides/tidal-locking/
>In Depth | Mercury – NASA Solar System Exploration. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/planets/mercury/in-depth/
>Correia, A. C. M., & Laskar, J. (2009). Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus, 201(1), 1–11. https://doi.org/10.1016/j.icarus.2008.12.034
>Wall, M. (2021, October 13). Life on Venus may never have been possible. Space.com. https://www.space.com/venus-never-habitable-no-oceans
>A Solution to the Faint-Sun Paradox Reveals a Narrow Window for Life | Quanta Magazine. (2022, April 2). Quanta Magazine. https://www.quantamagazine.org/the-sun-was-dimmer-when-earth-formed-how-did-life-emerge-20220127/
>Turbet, M., Bolmont, E., Chaverot, G., Ehrenreich, D., Leconte, J., & Marcq, E. (2021). Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature, 598(7880), 276–280. https://doi.org/10.1038/s41586-021-03873-w
>Constantinou, T., Shorttle, O., & Rimmer, P. B. (2024). A dry Venusian interior constrained by atmospheric chemistry. Nature Astronomy, 1-10. https://doi.org/10.1038/s41550-024-02414-5
>Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., O’Neil, J., & Little, C. T. S. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543(7643), 60–64. https://doi.org/10.1038/nature21377
>Martin, W., Baross, J. A., Kelley, D. S., & Russell, M. J. (2008). Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6(11), 805–814. https://doi.org/10.1038/nrmicro1991
>Deamer, D. W., & Georgiou, C. D. (2015). Hydrothermal Conditions and the Origin of Cellular Life. Astrobiology, 15(12), 1091–1095. https://doi.org/10.1089/ast.2015.1338
>Georgieva, M. N., Little, C. T. S., Maslennikov, V. V., Glover, A. G., Ayupova, N. R., & Herrington, R. (2021). The history of life at hydrothermal vents. Earth-Science Reviews, 217, 103602. https://doi.org/10.1016/j.earscirev.2021.103602
>Q. Choi, C. (2016, March 6). NASA Astrobiology. https://astrobiology.nasa.gov/news/lifes-building-blocks-form-in-replicated-deep-sea-vents/
>Burcar, B. T., Barge, L. M., Trail, D., Watson, E. B., Russell, M. J., & McGown, L. B. (2015). RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology, 15(7), 509–522. https://doi.org/10.1089/ast.2014.1280
>The End of the RNA World Is Near, Biochemists Argue | Quanta Magazine. (2019, February 28). Quanta Magazine. https://www.quantamagazine.org/the-end-of-the-rna-world-is-near-biochemists-argue-20171219
>Wills, P. R., & Carter, C. W. (2018). Insuperable problems of the genetic code initially emerging in an RNA world. BioSystems, 164, 155–166. https://doi.org/10.1016/j.biosystems.2017.09.006
>American Crystallographic Association (ACA). (2016, July 20). Universal Genetic Code May Not Be So Universal. newswise.com. https://www.newswise.com/articles/universal-genetic-code-may-not-be-so-universal
>Müller, F., Escobar, L., Xu, F., Węgrzyn, E., Nainytė, M., Amatov, T., Chan, C., Pichler, A., & Carell, T. (2022). A prebiotically plausible scenario of an RNA–peptide world. Nature, 605(7909), 279–284. https://doi.org/10.1038/s41586-022-04676-3
>Carell, T., Brandmayr, C., Hienzsch, A., Müller, M., Pearson, D., Reiter, V., Thoma, I., Thumbs, P., & Wagner, M. (2012). Structure and Function of Noncanonical Nucleobases. Angewandte Chemie, 51(29), 7110–7131. https://doi.org/10.1002/anie.201201193
>Liu, B., Pappas, C. G., Ottelé, J., Schaeffer, G., Jurissek, C., Pieters, P. F., Altay, M., Marić, I., Stuart, M. C. A., & Otto, S. (2020). Spontaneous Emergence of Self-Replicating Molecules Containing Nucleobases and Amino Acids. Journal of the American Chemical Society, 142(9), 4184–4192. https://doi.org/10.1021/jacs.9b10796
>Mizuuchi, R., Furubayashi, T., & Ichihashi, N. (2022). Evolutionary transition from a single RNA replicator to a multiple replicator network. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29113-x
>Howell, E. (2020). DNA’s Building Blocks May Have Their Origins in Outer Space. Discovery. https://www.discovery.com/science/dna-s-building-blocks-may-have-their-origins-in-outer-space
>Williams, M. (2022, April 27). All Five of Life's Informational Components can Form in Space - Universe Today. Universe Today. https://www.universetoday.com/155615/all-five-of-lifes-informational-components-can-form-in-space/
>Oba, Y., Takano, Y., Naraoka, H., Watanabe, N., & Kouchi, A. (2019). Nucleobase synthesis in interstellar ices. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12404-1
>Scientists discover new “origins of life” chemical reactions: The reaction generates amino acids and nucleic acids, the building blocks of proteins and DNA. (2022, July 22). ScienceDaily. https://www.sciencedaily.com/releases/2022/07/220728112005.htm
>Pulletikurti, S., Yadav, M., Springsteen, G., & Krishnamurthy, R. (2022). Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways. Nature Chemistry, 14(10), 1142–1150. https://doi.org/10.1038/s41557-022-00999-w
>Ucl. (2022, May 6). Deep sea vents had ideal conditions for origin of life. UCL News. https://www.ucl.ac.uk/news/2019/nov/deep-sea-vents-had-ideal-conditions-origin-life
>Jordan, S. (2021, November 8). Protocells in deep sea hydrothermal vents: another piece of the origin of life puzzle. Ecology & Evolution Community. https://ecoevocommunity.nature.com/posts/55368-protocells-in-deep-sea-hydrothermal-vents-another-piece-of-the-origin-of-life-puzzle
>Jordan, S., Rammu, H., Zheludev, I., Hartley, A. M., Maréchal, A., & Lane, N. (2019). Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nature Ecology and Evolution, 3(12), 1705–1714. https://doi.org/10.1038/s41559-019-1015-y
>Urton, J. (2019, August 12). First cells on ancient Earth may have emerged because building blocks of proteins stabilized membranes. UW News. https://www.washington.edu/news/2019/08/12/protein-building-blocks-stabilize-membranes/
>Cornell, C. E., Black, R. A., Xue, M., Litz, H. E., Ramsay, A. J., Gordon, M. T., Mileant, A., Cohen, Z. R., Williams, J. A., Lee, K. K., Drobny, G. P., & Keller, S. L. (2019). Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17239–17244. https://doi.org/10.1073/pnas.1900275116
>Black, R. A., Blosser, M. C., Stottrup, B. L., Tavakley, R., Deamer, D. W., & Keller, S. L. (2013). Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proceedings of the National Academy of Sciences, 110(33), 13272–13276. https://doi.org/10.1073/pnas.1300963110
>Lin, J., Kamat, N. P., Jena, S. G., & Szostak, J. W. (2018). Fatty Acid/Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. Small, 14(15), 1704077. https://doi.org/10.1002/smll.201704077
>Attal, R., & Schwartz, L. (2021). Thermally driven fission of protocells. Biophysical Journal, 120(18), 3937–3959. https://doi.org/10.1016/j.bpj.2021.08.020
>Jheeta, S., Chatzitheodoridis, E., Devine, K. G., & Block, J. (2021). The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life, 11(9), 872. https://doi.org/10.3390/life11090872
>Hilário, A., Capa, M., Dahlgren, T. G., Halanych, K. M., Little, C. T. S., Thornhill, D. J., Verna, C., & Glover, A. G. (2011). New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE, 6(2), e16309. https://doi.org/10.1371/journal.pone.0016309
>Bright, M., Klose, J., & Nussbaumer, A. D. (2013). Giant tubeworms. Current Biology, 23(6). https://www.cell.com/current-biology/pdf/S0960-9822%2813%2900074-2.pdf
>Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1(9). https://doi.org/10.1038/nmicrobiol.2016.116
>Moody, E. R. R., Álvarez-Carretero, S., Mahendrarajah, T. A., Clark, J. W., Betts, H. C., Dombrowski, N., Szánthó, L. L., Boyle, R. A., Daines, S., Chen, X., Lane, N., Yang, Z., Shields, G. A., Szöllősi, G. J., Spang, A., Pisani, D., Williams, T. A., Lenton, T. M., & Donoghue, P. C. J. (2024). The nature of the last universal common ancestor and its impact on the early Earth system. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-024-02461-1
>Koonin, E. V., Krupovic, M., Ishino, S., & Ishino, Y. (2020). The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biology, 18(1). https://doi.org/10.1186/s12915-020-00800-9
>Embley, M., & Williams, T. (2016, May 10). Only two domains, not three: changing views on the tree of life. Microbiology Society. https://microbiologysociety.org/publication/past-issues/what-is-life/article/only-two-domains-not-three-changing-views-on-the-tree-of-life-what-is-life.html
>Williams, T. A., Foster, P. G., Cox, C. J., & Embley, T. M. (2013). An archaeal origin of eukaryotes supports only two primary domains of life. Nature, 504(7479), 231–236. https://doi.org/10.1038/nature12779
>Cojocaru, R., & Unrau, P. J. (2017). Transitioning to DNA genomes in an RNA world. eLife, 6. https://doi.org/10.7554/elife.32330
>Alberts, B. (2002). The RNA World and the Origins of Life. Molecular Biology of the Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK26876/
>Krupovic, M., Dolja, V. V., & Koonin, E. V. (2019). Origin of viruses: primordial replicators recruiting capsids from hosts. Nature Reviews Microbiology, 17(7), 449–458. https://doi.org/10.1038/s41579-019-0205-6
>Wein, T., & Dagan, T. (2020). Plasmid evolution. Current Biology, 30(19), R1158–R1163. https://doi.org/10.1016/j.cub.2020.07.003
>Kado, C. I. (1998). Origin and evolution of plasmids. Antonie Van Leeuwenhoek, 73(1), 117–126. https://doi.org/10.1023/a:1000652513822
>Moelling, K., & Broecker, F. (2021). Viroids and the origin of life. International Journal of Molecular Sciences, 22(7), 3476. https://doi.org/10.3390/ijms22073476
>Zeroing in on the origins of Earth’s “single most important evolutionary innovation.” (2021, September 28). MIT News | Massachusetts Institute of Technology. https://news.mit.edu/2021/photosynthesis-evolution-origins-0928
>Fournier, G. P., Moore, K., Rangel, L. T., Payette, J., Momper, L., & Bosak, T. (2021). The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proceedings of the Royal Society B, 288(1959). https://doi.org/10.1098/rspb.2021.0675
>Hanada, S. (2015). Anoxygenic Photosynthesis —A Photochemical Reaction That Does Not Contribute to Oxygen Reproduction—. Microbes and Environments, 31(1), 1–3. https://doi.org/10.1264/jsme2.me3101rh
>Drabon, N., Knoll, A. H., Lowe, D. R., Bernasconi, S. M., Brenner, A. R., & Mucciarone, D. A. (2024). Effect of a giant meteorite impact on Paleoarchean surface environments and life. Proceedings of the National Academy of Sciences, 121(44), e2408721121. https://doi.org/10.1073/pnas.2408721121
>Korenaga, J. (2021). Was There Land on the Early Earth? Life, 11(11), 1142. https://doi.org/10.3390/life11111142
>Yellowstone Volcano Observatory. (2018, April 16). The source of Yellowstone’s heat | U.S. Geological Survey. https://www.usgs.gov/observatories/yvo/news/source-yellowstones-heat
>Aiyer, K. (2022, February 18). The Great Oxidation Event: How cyanobacteria Changed life | ASM.org. ASM.org. https://asm.org/Articles/2022/February/The-Great-Oxidation-Event-How-Cyanobacteria-Change
>Schirrmeister, B. E., De Vos, J. M., Antonelli, A., & Bagheri, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences, 110(5), 1791–1796. https://doi.org/10.1073/pnas.1209927110
>Trail, D., Watson, E. B., & Tailby, N. D. (2011). The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480(7375), 79–82. https://doi.org/10.1038/nature10655
>Mallik, A., Li, Y., & Wiedenbeck, M. (2017). Nitrogen evolution within the Earth’s atmosphere–mantle system assessed by recycling in subduction zones. Earth and Planetary Science Letters, 482, 556–566. https://doi.org/10.1016/j.epsl.2017.11.045
>Izon, G., Zerkle, A. L., Williford, K. H., Farquhar, J., Poulton, S. W., & Claire, M. (2017). Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 114(13). https://doi.org/10.1073/pnas.1618798114
>Kim, W., & Whitman, W. B. (2013). Methanogens. Elsevier eBooks, 602–606. https://doi.org/10.1016/b978-0-12-384730-0.00204-4
>Olejarz, J., Iwasa, Y., Knoll, A. H., & Nowak, M. A. (2021). The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23286-7
>Weizmann Institute of Science. (2017, January 31). A rusty green early ocean?. ScienceDaily. Retrieved July 29, 2023 from www.sciencedaily.com/releases/2017/01/170131080007.htm
>Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R., & Feldman, Y. (2017). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2), 135–139. https://doi.org/10.1038/ngeo2878
>Jaziri, A. Y., Charnay, B., Selsis, F., Leconte, J., & Lefèvre, F. (2022). Dynamics of the Great Oxidation Event from a 3D photochemical–climate model. Climate of the Past, 18(10), 2421–2447. https://doi.org/10.5194/cp-18-2421-2022
>Gumsley, A., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811–1816. https://doi.org/10.1073/pnas.1608824114
>Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A., & Horner, T. J. (2019). A productivity collapse to end Earth’s Great Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17207–17212. https://doi.org/10.1073/pnas.1900325116
>Case, A. J. (2017). On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants, 6(4), 82. https://doi.org/10.3390/antiox6040082
>Jiacheng Liu, & Michalski, J. (2021). The Great Oxidation event on early Mars: Evidence from Remote Sensing and Mars Rover Data.
>Yokoo, S., Hirose, K., Tagawa, S., Morard, G., & Ohishi, Y. (2022). Stratification in planetary cores by liquid immiscibility in Fe-S-H. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28274-z
>Siegel, E. (2017, March 3). NASA’s MAVEN discovers how Mars lost its atmosphere. Forbes. https://www.forbes.com/sites/startswithabang/2017/03/03/nasa-discovers-how-mars-lost-its-atmosphere/
>Mukherjee, I., Large, R. R., Corkrey, R., & Danyushevsky, L. V. (2018). The Boring Billion, a slingshot for Complex Life on Earth. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22695-x
>Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K. W., Anantharaman, K., Starnawski, P., Kjeldsen, K. U., Stott, M. B., Nunoura, T., Banfield, J. F., Schramm, A., Baker, B. J., Spang, A., & Ettema, T. J. G. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353–358. https://doi.org/10.1038/nature21031
>Roger, A. J., Susko, E., & Leger, M. M. (2021). Evolution: Reconstructing the Timeline of Eukaryogenesis. Current Biology, 31(4), R193–R196. https://doi.org/10.1016/j.cub.2020.12.035
>Imachi, H., Nobu, M. K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., Matsui, Y., Miyazaki, M., Murata, K., Saito, Y., Sakai, S., Song, C., Tasumi, E., Yamanaka, Y., Yamaguchi, T., . . . Takai, K. (2020). Isolation of an archaeon at the prokaryote–eukaryote interface. Nature, 577(7791), 519–525. https://doi.org/10.1038/s41586-019-1916-6
>Knopp, M., Stockhorst, S., Van Der Giezen, M., Garg, S. G., & Gould, S. B. (2021). The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3%. Genome Biology and Evolution, 13(6). https://doi.org/10.1093/gbe/evab085
>Kontou, A., Herman, E. K., Field, M. C., Dacks, J. B., & Koumandou, V. L. (2022). Evolution of factors shaping the endoplasmic reticulum. Traffic, 23(9), 462–473. https://doi.org/10.1111/tra.12863
>Leander, B. S. (2020). Predatory protists. Current Biology, 30(10), R510–R516. https://doi.org/10.1016/j.cub.2020.03.052
>Zakryś, B., Milanowski, R., & Karnkowska, A. (2016). Evolutionary Origin of Euglena. Advances in Experimental Medicine and Biology, 3–17. https://doi.org/10.1007/978-3-319-54910-1_1
>McFadden, G. I., & Yeh, E. (2017). The apicoplast: now you see it, now you don’t. International Journal for Parasitology/International Journal for Parasitology, 47(2–3), 137–144. https://doi.org/10.1016/j.ijpara.2016.08.005
>Eleftherianos, I., Atri, J., Accetta, J., & Castillo, J. C. (2012). Endosymbiotic bacteria in insects: guardians of the immune system? Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00046
>Bernstein, H., & Bernstein, C. (2016). Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis. Springer eBooks, 103–117. https://doi.org/10.1007/978-3-319-65536-9_7
>Hörandl, E., & Speijer, D. (2018). How oxygen gave rise to eukaryotic sex. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172706. https://doi.org/10.1098/rspb.2017.2706
>Novikova, O. S., & Belfort, M. (2017). Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends in Genetics, 33(11), 773–783. https://doi.org/10.1016/j.tig.2017.07.009
>Rogozin, I. B., Carmel, L., Csűrös, M., & Koonin, E. V. (2012). Origin and evolution of spliceosomal introns. Biology Direct, 7(1). https://doi.org/10.1186/1745-6150-7-11
>Aspden, J. L., Wallace, E. W., & Whiffin, N. (2023). Not all exons are protein coding: Addressing a common misconception. Cell Genomics, 3(4), 100296. https://doi.org/10.1016/j.xgen.2023.100296
>Diez, J., Martinez, J. P., Mestres, J., Sasse, F., Frank, R., & Meyerhans, A. (2012). Myxobacteria: natural pharmaceutical factories. Microbial Cell Factories, 11(1). https://doi.org/10.1186/1475-2859-11-52
>Parfrey, L. W., & Lahr, D. J. G. (2013). Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187). BioEssays, 35(4), 339–347. https://doi.org/10.1002/bies.201200143
>Knoll, A. H. (2011). The Multiple Origins of Complex Multicellularity. Annual Review of Earth and Planetary Sciences, 39(1), 217–239. https://doi.org/10.1146/annurev.earth.031208.100209
>Miao, L., Yin, Z., Knoll, A. H., Qu, Y., & Zhu, M. (2024). 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. Science Advances, 10(4). https://doi.org/10.1126/sciadv.adk3208
>Cooper, G. M. (2000). The Nucleus. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9845/
>Halverson, G. P., Porter, S. M., & Shields, G. (2019). The Tonian and Cryogenian Periods. Elsevier eBooks, 495–519. https://doi.org/10.1016/b978-0-12-824360-2.00017-6
>Simion, P., Piégay, H., Baurain, D., Jager, M., Richter, D. J., Di Franco, A., Roure, B., Satoh, N., Quéinnec, E., Ereskovsky, A., Lapébie, P., Corre, E., Delsuc, F., King, N., Wörheide, G., & Manuel, M. (2017). A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology, 27(7), 958–967. https://doi.org/10.1016/j.cub.2017.02.031
>Schirber, M. (2015, August). NASA GISS: Research features: “Snowball Earth” might have been slushy. https://www.giss.nasa.gov/research/features/201508_slushball/
>Song, H., An, Z., Ye, Q., Stüeken, E. E., Li, J., Hu, J., Algeo, T. J., Tian, L., Chu, D., Song, H., Xiao, S., & Tong, J. (2023). Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37172-x
>Klatt, J. M., Chennu, A., Arbic, B. K., Biddanda, B. A., & Dick, G. J. (2021). Possible link between Earth’s rotation rate and oxygenation. Nature Geoscience, 14(8), 564–570. https://doi.org/10.1038/s41561-021-00784-3
>Sánchez-Baracaldo, P., Ridgwell, A., & Raven, J. A. (2014). A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 24(6), 652–657. https://doi.org/10.1016/j.cub.2014.01.041
>Callieri, C., Cabello-Yeves, P. J., & Bertoni, F. (2022). The “Dark Side” of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms, 10(3), 546. https://doi.org/10.3390/microorganisms10030546
>Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields, G. A., & Butterfield, N. J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7(4), 257–265. https://doi.org/10.1038/ngeo2108
>S. Dunn, F., & G. Liu, A. (2019, April 14). PALAEONTOLOGY[online] | Article: Fossil Focus > Fossil Focus: The Ediacaran Biota. PALAEONTOLOGY[Online]. https://www.palaeontologyonline.com/articles/2017/fossil-focus-ediacaran-biota/?doing_wp_cron=1690857079.6143770217895507812500