Sources: Birth and Death
*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Birth and Death:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Devonian. (n.d.). http://www.scotese.com/newpage3.htm
>Vitt, L. J., & Caldwell, J. P. (2008). Evolution of Ancient and Modern Amphibians and Reptiles. Elsevier eBooks, 83–110. https://doi.org/10.1016/b978-0-12-374346-6.00003-1
>Twitchett, R. J. (2012). Mass Extinctions, Notable Examples of. Elsevier eBooks, 167–177. https://doi.org/10.1016/b978-0-12-384719-5.00092-7
>Joseph, A. (2022). Geological timeline of significant events on Earth. Elsevier eBooks, 55–114. https://doi.org/10.1016/b978-0-323-95717-5.00020-7
>Stigall, A. L. (2011). Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction.” GSA Today, 22(1), 4–9. https://doi.org/10.1130/g128a.1
> Supernovae. (n.d.). Imagine the Universe! https://imagine.gsfc.nasa.gov/science/objects/supernovae1.html
>Fields, B. D., Melott, A. L., Ellis, J., Ertel, A. F., Fry, B., Lieberman, B. S., Liu, Z., Miller, J., & Thomas, B. C. (2020). Supernova triggers for end-Devonian extinctions. Proceedings of the National Academy of Sciences of the United States of America, 117(35), 21008–21010. https://doi.org/10.1073/pnas.2013774117
>Racki, G. (2020). A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions? Global and Planetary Change, 189, 103174. https://doi.org/10.1016/j.gloplacha.2020.103174
>Rakociński, M., Marynowski, L., Pisarzowska, A., Bełdowski, J., Siedlewicz, G., Zatoń, M., Perri, M. C., Spalletta, C., & Schönlaub, H. P. (2020). Volcanic related methylmercury poisoning as the possible driver of the end-Devonian Mass Extinction. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64104-2
>Bond, D. P., & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005
>Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic Ice Age: An Evolving Paradigm. Annual Review of Earth and Planetary Sciences, 41(1), 629–656. https://doi.org/10.1146/annurev.earth.031208.100118
>Pawlik, Ł., Buma, B., Šamonil, P., Kvaček, J., Gałązka, A., Kohout, P., & Malik, I. (2020). Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth’s system properties - A critical review. Earth-Science Reviews, 205, 103200. https://doi.org/10.1016/j.earscirev.2020.103200
>Stein, W. E., Berry, C. M., Morris, J., Hernick, L. V., Mannolini, F., Straeten, C. V., Landing, E., Marshall, J., Wellman, C. H., Beerling, D. J., & Leake, J. R. (2020). Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology, 30(3), 421-431.e2. https://doi.org/10.1016/j.cub.2019.11.067
>Engelman, R. K. (2023). A Devonian Fish Tale: A New Method of Body Length Estimation Suggests Much Smaller Sizes for Dunkleosteus terrelli (Placodermi: Arthrodira). Diversity, 15(3), 318. https://doi.org/10.3390/d15030318
>Coatham, S. J., Vinther, J., Rayfield, E. J., & Klug, C. (2020). Was the Devonian placoderm Titanichthys a suspension feeder? Royal Society Open Science, 7(5), 200272. https://doi.org/10.1098/rsos.200272
>Long, J. A., Trinajstic, K., & Johanson, Z. (2009). Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature, 457(7233), 1124–1127. https://doi.org/10.1038/nature07732
>Copper, P. (2002). Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1–3), 27–65. https://doi.org/10.1016/s0031-0182(01)00472-2
>Visscher, P. T., & Stolz, J. F. (2004). Microbial mats as bioreactors: populations, processes, and products. Elsevier eBooks, 87–100. https://doi.org/10.1016/b978-0-444-52019-7.50009-7
>Greb, S., Hendricks, R., & Chesnut, D. (1993). Fossil Beds of the Falls of the Ohio. Kentucky Geological Survey. https://kgs.uky.edu/kgsweb/olops/pub/kgs/kgsxisp19reduce.pdf
>Shikina, S., & Chang, C. (2017). Cnidaria. Elsevier eBooks, 491–497. https://doi.org/10.1016/b978-0-12-809633-8.20597-9
>Zapalski, M. K. (2014). Evidence of photosymbiosis in Palaeozoic tabulate corals. Proceedings of the Royal Society B: Biological Sciences, 281(1775), 20132663. https://doi.org/10.1098/rspb.2013.2663
>Stanley, G. D. (2006). Photosymbiosis and the Evolution of Modern Coral Reefs. Science, 312(5775), 857–858. https://doi.org/10.1126/science.1123701
>Zapalski, M. K., Nowicki, J., Jakubowicz, M., & Berkowski, B. (2017). Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 416–429. https://doi.org/10.1016/j.palaeo.2017.09.028
>Eckardt, N. A. (2006). Genetic and Epigenetic Regulation of Embryogenesis. The Plant Cell, 18(4), 781–784. https://doi.org/10.1105/tpc.106.042440
>Cooper, G. M. (2000). The Complexity of Eukaryotic Genomes. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9846/
>Patil, V. S., Zhou, R., & Rana, T. M. (2013). Gene regulation by non-coding RNAs. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 16–32. https://doi.org/10.3109/10409238.2013.844092
>Cooper, G. M. (2000). Regulation of Transcription in Eukaryotes. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9904/
>Henneman, B., Van Emmerik, C., Van Ingen, H., & Dame, R. T. (2018). Structure and function of archaeal histones. PLOS Genetics, 14(9), e1007582. https://doi.org/10.1371/journal.pgen.1007582
>Cooper, G. M. (2000). The Nucleus. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9845/
>Rensing, S. A. (2016). (Why) Does Evolution Favour Embryogenesis? Trends in Plant Science, 21(7), 562–573. https://doi.org/10.1016/j.tplants.2016.02.004
>Kumar, A., Placone, J. K., & Engler, A. J. (2017). Understanding the extracellular forces that determine cell fate and maintenance. Development, 144(23), 4261–4270. https://doi.org/10.1242/dev.158469
>Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157(1), 95–109. https://doi.org/10.1016/j.cell.2014.02.045
>Whale Shark Anatomy: Exploring the Body Plan of the World’s Largest Fish. (n.d.). Marine Megafauna Foundation. https://marinemegafauna.org/guide-to-whale-sharks/anatomy
>Jamesboy. (2017, June 20). How Many Species of Titanichthys are there? Before the Bolide. https://beforethebolide.wordpress.com/2017/06/21/how-many-species-of-titanichthys-are-there/#comments
>Dean, B. 1. (1909). Studies on fossil fishes (sharks, chimaeroids and arthrodires. Memoirs of the AMNH ; v. 9, pt. 5. https://digitallibrary.amnh.org/items/e08e038d-4c7c-4f93-85df-425b5ebeb30e
>History, C. M. O. N. (1938). The dorsal spine of Cladoselache. https://www.biodiversitylibrary.org/item/133700#page/5/mode/1up
>Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E., & Tietjen, K. (2016). A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature, 541(7636), 208–211. https://doi.org/10.1038/nature20806
>Brett, C. E., & Walker, S. E. (2002). Predators and Predation in Paleozoic Marine Environments. The Paleontological Society Papers, 8, 93–118. https://doi.org/10.1017/s1089332600001078
>Anderson, P. S. L., & Westneat, M. W. (2008). A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi). Paleobiology, 35(2), 251–269. https://doi.org/10.1666/08011.1
>Jobbins, M., Rücklin, M., Ferrón, H. G., & Klug, C. (2022). A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.969158
>Ancient fish scales and vertebrate teeth share an embryonic origin. (2017, November 19). University of Cambridge. https://www.cam.ac.uk/research/news/ancient-fish-scales-and-vertebrate-teeth-share-an-embryonic-origin
>Gillis, J. A., Alsema, E. C., & Criswell, K. E. (2017). Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13200–13205. https://doi.org/10.1073/pnas.1713827114
>Chen, D., Blom, H., Sanchez, S., Tafforeau, P., Märss, T., & Ahlberg, P. (2020). The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus. eLife, 9. https://doi.org/10.7554/elife.60985
>Rücklin, M., Donoghue, P. C. J., Johanson, Z., Trinajstic, K., Marone, F., & Stampanoni, M. (2012). Development of teeth and jaws in the earliest jawed vertebrates. Nature, 491(7426), 748–751. https://doi.org/10.1038/nature11555
>Dhillon, S. K. (2018). Biological Databases. Elsevier eBooks, 96–117. https://doi.org/10.1016/b978-0-12-809633-8.20198-2
>Kitching, I., Forey, P., & Williams, D. (2016). Cladistics ☆. Elsevier eBooks. https://doi.org/10.1016/b978-0-12-809633-8.02357-8
>Johanson, Z. (2021). Paleontology: There are more placoderms in the sea. Current Biology, 31(16), R1012–R1014. https://doi.org/10.1016/j.cub.2021.06.073
>Betancur-R, R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G., & Ortí, G. (2017). Phylogenetic classification of bony fishes. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-0958-3