Sources: Calm Before the Storm

*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources. 


Calm Before the Storm:

>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw

>Permian. (n.d.). http://www.scotese.com/newpage5.htm

>Cole, D., Johnson, M. R., & Day, M. O. (2016). Lithostratigraphy of the Abrahamskraal Formation (Karoo Supergroup), South Africa. South African Journal of Geology, 119(2), 415–424. https://doi.org/10.2113/gssajg.119.2.415

>Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic Ice Age: An Evolving Paradigm. Annual Review of Earth and Planetary Sciences, 41(1), 629–656. https://doi.org/10.1146/annurev.earth.031208.100118

>Viglietti, P. A., Rubidge, B. S., & Smith, R. M. H. (2017). New Late Permian tectonic model for South Africa’s Karoo Basin: foreland tectonics and climate change before the end-Permian crisis. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09853-3

>Palaeos Vertebrates: Therapsida: Tapinocephalia: Tapinocephalidae. (n.d.). http://palaeos.com/vertebrates/therapsida/tapinocephalidae.html

>Tizard, I. R. (2022). The evolution of the mammals and their immune systems. In Elsevier eBooks (pp. 3–13). https://doi.org/10.1016/b978-0-323-95219-4.00019-8

>Greenfield, T. (2022, August 23). Estemmenosuchus  skin and osteoderms. Incertae Sedis. https://incertaesedisblog.wordpress.com/2021/03/12/estemmenosuchus-skin-and-osteoderms/

>Chudinov, P. K. (1968). Structure of the integuments of theromorphs. Doklady Akad. Nauk SSSR, 179. https://drive.google.com/file/d/1TNUohdHqb8CoxtZZFKapdfsGKbkhADkO/view?usp=sharing

>Smith, R. M. H., Botha-Brink, J., & Viglietti, P. A. (2022). Taphonomy of drought afflicted tetrapods in the Early Triassic Karoo Basin, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 604, 111207. https://doi.org/10.1016/j.palaeo.2022.111207

>Oftedal, O. T. (2011). The evolution of milk secretion and its ancient origins. Animal, 6(3), 355–368. https://doi.org/10.1017/s1751731111001935

>Smith, R. M. H., & Botha-Brink, J. (2011). Morphology and composition of bone-bearing coprolites from the Late Permian Beaufort Group, Karoo Basin, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 312(1–2), 40–53. https://doi.org/10.1016/j.palaeo.2011.09.006 

>Rey, K. A., Amiot, R., Fourel, F., Abdala, F., Fluteau, F., Jalil, N., Liu, J., Rubidge, B. S., Smith, R. M. H., Steyer, J., Viglietti, P. A., Xu, W., & Lécuyer, C. (2017). Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades. eLife, 6. https://doi.org/10.7554/elife.28589 

>Araújo, R., David, R., Benoit, J., Lungmus, J. K., Stoessel, A., Barrett, P. M., Maisano, J. A., Ekdale, E. G., Orliac, M. J., Luo, Z., Martinelli, A. G., Hoffman, E. A., Sidor, C. A., Martins, R. M. S., Spoor, F., & Angielczyk, K. D. (2022). Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature, 607(7920), 726–731. https://doi.org/10.1038/s41586-022-04963-z

>Benoit, J., Abdala, F., Manger, P. R., & Rubidge, B. S. (2015). The sixth sense in mammalians forerunners: variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids. Acta Palaeontologica Polonica. https://doi.org/10.4202/app.00219.2015 

>Benoit, J., Manger, P. R., Norton, L. A., Fernandez, V., & Rubidge, B. S. (2017). Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia). PeerJ, 5, e3496. https://doi.org/10.7717/peerj.3496

>Husby, C., & Walkowiak, R. (2012). An Introduction to the Genus Equisetum (Horsetail) and the Class Equisetopsida (Sphenopsida) as a whole. ResearchGate. https://doi.org/10.13140/RG.2.2.11669.52961 

>Sweeney, M. R. (2019). Dust Emission Processes. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-818234-5.00015-8

>Volk, T. (2000). Fungi. In Elsevier eBooks (pp. 141–163). https://doi.org/10.1016/b0-12-226865-2/00134-6

>Jeong, A., Cheung, S. Y., Walker, I. J., & Dorn, R. I. (2017). Urban Geomorphology of an Arid City: Case Study of Phoenix, Arizona. In Elsevier eBooks (pp. 177–204). https://doi.org/10.1016/b978-0-12-811951-8.00010-2

>Vitt, D. H., Crandall-Stotler, B., & Wood, A. J. (2014). Bryophytes: Survival in a dry world through tolerance and avoidance. ResearchGate. https://www.researchgate.net/publication/297363188_Bryophytes_Survival_in_a_dry_world_through_tolerance_and_avoidance 

>Darby, B. J., & Neher, D. A. (2016). Microfauna within biological soil crusts. In Ecological studies (pp. 139–157). https://doi.org/10.1007/978-3-319-30214-0_8 

>Boothby, T. C., Tapia, H., Brozena, A. H., Piszkiewicz, S., Smith, A. E., Giovannini, I., Rebecchi, L., Pielak, G. J., Koshland, D., & Goldstein, B. (2017). Tardigrades use intrinsically disordered proteins to survive desiccation. Molecular Cell, 65(6), 975-984.e5. https://doi.org/10.1016/j.molcel.2017.02.018 

>Suma, H. R., Prakash, S., & Eswarappa, S. M. (2020). Naturally occurring fluorescence protects the eutardigrade Paramacrobiotus sp. from ultraviolet radiation. Biology Letters, 16(10), 20200391. https://doi.org/10.1098/rsbl.2020.0391 

>Chow, J. C. (2017). Dose enhancement effect in radiotherapy: adding gold nanoparticles to tumor in cancer treatment. In Elsevier eBooks (pp. 383–403). https://doi.org/10.1016/b978-0-323-46144-3.00015-5 

>Kihm, J., Smith, F. W., Kim, S., Rho, H. S., Zhang, X., Liu, J., & Park, T. S. (2023). Cambrian lobopodians shed light on the origin of the tardigrade body plan. Proceedings of the National Academy of Sciences, 120(28). https://doi.org/10.1073/pnas.2211251120 

>Shelton, C. D., Chinsamy, A., & Rothschild, B. M. (2017). Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida). Historical Biology, 31(8), 1093–1096. https://doi.org/10.1080/08912963.2017.1419348

>Palaeos Vertebrates: Therapsida: Tapinocephalia. (n.d.). http://palaeos.com/vertebrates/therapsida/tapinocephalia.html

>Benoit, J., Kruger, A., Jirah, S., Fernandez, V., & Rubidge, B. S. (2020). Palaeoneurology and palaeobiology of the dinocephalian Anteosaurus magnificus. Acta Palaeontologica Polonica, 66. https://doi.org/10.4202/app.00800.2020

>Van Valkenburgh, B., & Jenkins, I. (2002). Evolutionary Patterns in the History of Permo-Triassic and Cenozoic Synapsid Predators. The Paleontological Society Papers, 8, 267–288. https://doi.org/10.1017/s1089332600001121

>Rößler, R., Philippe, M., Van Konijnenburg-Van Cittert, J. H., & Zheng, S. (2014). Which name(s) should be used for Araucaria-like fossil wood? – Results of a poll. ResearchGate. https://www.researchgate.net/publication/259272368_Which_names_should_be_used_for_Araucaria-like_fossil_wood_-_Results_of_a_poll

>Mcloughlin, S., & McNamara, K. (2001). Ancient Floras of Western Australia. ResearchGate. https://www.researchgate.net/publication/233751513_Ancient_Floras_of_Western_Australia

>Mcloughlin, S. (2011). Glossopteris - insights into the architecture and relationships of an iconic Permian Gondwanan plant. ResearchGate. https://www.researchgate.net/publication/216887619_Glossopteris_-_insights_into_the_architecture_and_relationships_of_an_iconic_Permian_Gondwanan_plant

>Gulbranson, E. L., Ryberg, P. E., Decombeix, A., Taylor, E. L., Taylor, T. N., & Isbell, J. L. (2014). Leaf habit of Late Permian Glossopteris trees from high-palaeolatitude forests. Journal of the Geological Society, 171(4), 493–507. https://doi.org/10.1144/jgs2013-127

>Prevec, R., Nel, A., Day, M. O., Muir, R. A., Matiwane, A., Kirkaldy, A. P., Moyo, S., Staniczek, A. H., Cariglino, B., Maseko, Z., Kom, N., Rubidge, B. S., Garrouste, R., Holland, A., & Barber-James, H. M. (2022). South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-04132-y

>Prokop, J., Krzemińska, E., Krzemiński, W., Rosová, K., Pecharová, M., Nel, A., & Engel, M. S. (2019). Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. Royal Society Open Science, 6(9), 190460. https://doi.org/10.1098/rsos.190460

>Jarzembowski, E. A., Wang, B., & Zheng, D. (2017). A new spiny reticulated beetle (Coleoptera: Cupedidae) from Cretaceous Burmese amber. Proceedings of the Geologists’ Association, 128(5–6), 798–802. https://doi.org/10.1016/j.pgeola.2017.07.003

>Trafton, A. (2021, January 15). Why cancer cells waste so much energy. MIT News | Massachusetts Institute of Technology. https://news.mit.edu/2021/cancer-cells-waste-energy-0115

>Luengo, A., Li, Z., & Vander, M. (2021, January 13). New clarity on the Warburg effect. National Cancer Institute. https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2021/vander-heiden-warburg-effect

>Doonan, J. H., & Sablowski, R. (2010). Walls around tumours — why plants do not develop cancer. Nature Reviews. Cancer, 10(11), 794–802. https://doi.org/10.1038/nrc2942 

>Why does water reflect light? (n.d.). Physics Stack Exchange. https://physics.stackexchange.com/questions/210607/why-does-water-reflect-light 

>A drop of water. (n.d.). The European Space Agency. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Lessons_online/A_drop_of_water 

>Palaeos Vertebrates Temnospondyli: Rhinesuchids & other primitive Stereospondyls. (n.d.). http://palaeos.com/vertebrates/temnospondyli/stereospondyli.html

>McHugh, J. (2013). Paleohistology and histovariability of the Permian stereospondyl Rhinesuchus. Journal of Vertebrate Paleontology, 34(1), 59–68. https://doi.org/10.1080/02724634.2013.787429

>Goddard, J. (2010). Arthropods, Tongue Worms, Leeches, and Arthropod-borne Diseases. In Elsevier eBooks (pp. 868–878). https://doi.org/10.1016/b978-0-7020-3935-5.00124-5

>Romano, M., Manucci, F., Rubidge, B. S., & Van Den Brandt, M. J. (2021). Volumetric Body Mass Estimate and in vivo Reconstruction of the Russian Pareiasaur Scutosaurus karpinskii. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.692035

>Simões, T. R., Kammerer, C. F., Caldwell, M. W., & Pierce, S. E. (2022). Successive climate crises in the deep past drove the early evolution and radiation of reptiles. Science Advances, 8(33). https://doi.org/10.1126/sciadv.abq1898 

>Lee, M. (1997). Pareiasaur phylogeny and the origin of turtles. Zoological Journal of the Linnean Society, 120(3), 197–280. https://doi.org/10.1006/zjls.1997.0080

>Gabora, L. (2012). Convergent Evolution. In Elsevier eBooks (pp. 178–180). https://doi.org/10.1016/b978-0-12-374984-0.00336-3

>Sues, H. (2019). The rise of reptiles: 320 Million Years of Evolution. Johns Hopkins University Press.

>Lyson, T. R., Rubidge, B. S., Scheyer, T. M., De Queiroz, K., Schachner, E. R., Smith, R. M. H., Botha-Brink, J., & Bever, G. S. (2016). Fossorial Origin of the Turtle Shell. Current Biology, 26(14), 1887–1894. https://doi.org/10.1016/j.cub.2016.05.020

>Sullivan, C., Reisz, R. R., & Smith, R. M. H. (2003). The Permian mammal-like herbivore Diictodon, the oldest known example of sexually dimorphic armament. Proceedings of the Royal Society B: Biological Sciences, 270(1511), 173–178. https://doi.org/10.1098/rspb.2002.2189

>Ray, S., & Chinsamy, A. (2002). Functional aspects of the postcranial anatomy of the Permian dicynodont Diictodon and their ecological implications. Palaeontology, 46(1), 151–183. https://doi.org/10.1111/1475-4983.00292

>Smith, R. M. H., Angielczyk, K. D., Benoit, J., & Fernandez, V. (2021). Neonate aggregation in the Permian dicynodont Diictodon (Therapsida, Anomodontia): Evidence for a reproductive function for burrows? Palaeogeography, Palaeoclimatology, Palaeoecology, 569, 110311. https://doi.org/10.1016/j.palaeo.2021.110311

>Laaß, M., & Schillinger, B. (2014). Reconstructing the Auditory Apparatus of Therapsids by Means of Neutron Tomography. Physics Procedia, 69, 628–635. https://doi.org/10.1016/j.phpro.2015.07.089

>Tucker, A. S. (2017). Major evolutionary transitions and innovations: the tympanic middle ear. Philosophical Transactions of the Royal Society B, 372(1713), 20150483. https://doi.org/10.1098/rstb.2015.0483

>Bertmar, G. (1962). Homology of Ear Ossicles. Nature, 193(4813), 393–394. https://doi.org/10.1038/193393a0

>Ling, K., Wen, H., Grasby, S. E., Zhao, H., Deng, C., & Yin, R. (2023). The Emeishan large igneous province eruption triggered coastal perturbations and the Capitanian mass extinction: Insights from mercury in Permian bauxite beds. Chemical Geology, 617, 121243. https://doi.org/10.1016/j.chemgeo.2022.121243

>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503

>Huang, Y., Chen, Z., Roopnarine, P. D., Benton, M. J., Zhao, L., Feng, X., & Li, Z. (2023). The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction. Current Biology, 33(6), 1059-1070.e4. https://doi.org/10.1016/j.cub.2023.02.007

>Ocean acidification. (n.d.). National Oceanic and Atmospheric Administration. https://www.noaa.gov/education/resource-collections/ocean-coasts/ocean-acidification

>Lamsdell, J. C., & Braddy, S. J. (2009). Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters, 6(2), 265–269. https://doi.org/10.1098/rsbl.2009.0700

>Kazlev, M. (n.d.). Palaeos Arthropoda: Insecta: Palaeodictyopteroida. http://palaeos.com/metazoa/arthropoda/palaeodictyopteroida/palaeodictyopteroida.html

>Rigo, M., Onoue, T., Tanner, L. H., Lucas, S. G., Godfrey, L., Katz, M., Zaffani, M., Grice, K., Cesar, J., Yamashita, D., Maron, M., Tackett, L. S., Campbell, H. J., Tateo, F., Concheri, G., Agnini, C., Chiari, M., & Bertinelli, A. (2020). The Late Triassic Extinction at the Norian/Rhaetian boundary: Biotic evidence and geochemical signature. Earth-Science Reviews, 204, 103180. https://doi.org/10.1016/j.earscirev.2020.103180

>Nowak, H., Schneebeli-Hermann, E., & Kustatscher, E. (2019). No mass extinction for land plants at the Permian–Triassic transition. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-07945-w

>Fielding, C. R., Frank, T. D., McLoughlin, S., Vajda, V., Mays, C., Tevyaw, A. P., Winguth, A., Winguth, C., Nicoll, R. S., Bocking, M., & Crowley, J. L. (2019). Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-07934-z

>Ruta, M., Botha-Brink, J., Mitchell, S. A., & Benton, M. J. (2013). The radiation of cynodonts and the ground plan of mammalian morphological diversity. Proceedings of the Royal Society B: Biological Sciences, 280(1769), 20131865. https://doi.org/10.1098/rspb.2013.1865