Sources: First-Time Mother

*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources. 


First-Time Mother:

>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw 

>Cretaceous. (n.d.). http://www.scotese.com/cretaceo.htm

>Cook, A. G. (2012). Cretaceous faunas and events, northern Eromanga Basin, Queensland. Episodes, 35(1), 153–159. https://doi.org/10.18814/epiiugs/2012/v35i1/014

>Jenkyns, H. C., Schouten-Huibers, L., Schouten, S., & Damsté, J. S. S. (2012). Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8(1), 215–226. https://doi.org/10.5194/cp-8-215-2012

>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503

>Krahl, A., Lipphaus, A., Sander, P. M., & Witzel, U. (2022). Determination of muscle strength and function in plesiosaur limbs: finite element structural analyses of Cryptoclidus eurymerus humerus and femur. PeerJ, 10, e13342. https://doi.org/10.7717/peerj.13342

>McHenry, C. R. (2009). Devourer of Gods: the palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. University of Newcastle Research Higher Degree Thesis. http://hdl.handle.net/1959.13/935911

>Foffa, D., Sassoon, J., Cuff, A. R., Mavrogordato, M., & Benton, M. J. (2014). Complex rostral neurovascular system in a giant pliosaur. Naturwissenschaften, 101(5), 453–456. https://doi.org/10.1007/s00114-014-1173-3

>O’Keefe, F. R., & Chiappe, L. M. (2011). Viviparity and K-Selected Life History in a Mesozoic Marine Plesiosaur (Reptilia, Sauropterygia). Science, 333(6044), 870–873. https://doi.org/10.1126/science.1205689

>Simões, T. R., Kammerer, C. F., Caldwell, M. W., & Pierce, S. E. (2022). Successive climate crises in the deep past drove the early evolution and radiation of reptiles. Science Advances, 8(33). https://doi.org/10.1126/sciadv.abq1898

>Noè, L. F., Taylor, M. A., & Gómez-Pérez, M. (2017). An integrated approach to understanding the role of the long neck in plesiosaurs. Acta Palaeontologica Polonica, 62. https://doi.org/10.4202/app.00334.2016

>Madzia, D., Sachs, S., & Lindgren, J. (2018). Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon. Geological Magazine, 156(07), 1201–1216. https://doi.org/10.1017/s0016756818000523

>Wiemann, J., Menéndez, I., Crawford, J. M., Fabbri, M., Gauthier, J. A., Hull, P. M., Norell, M. A., & Briggs, D. E. G. (2022). Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature, 606(7914), 522–526. https://doi.org/10.1038/s41586-022-04770-6

>Foffa, D., Cuff, A. R., Sassoon, J., Rayfield, E. J., Mavrogordato, M., & Benton, M. J. (2014). Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK. Journal of Anatomy, 225(2), 209–219. https://doi.org/10.1111/joa.12200

>Schmeisser, R. L., & Gillette, D. D. (2009). Unusual occurrence of gastroliths in a polycotylid plesiosaur from the Upper Cretaceous Tropic Shale, southern Utah. PALAIOS, 24(7), 453–459. https://doi.org/10.2110/palo.2008.p08-085r

>Bartholomai, A. (2012). The pachyrhizodontid teleosts from the marine Lower Cretaceous (latest mid to Late Albian) sediments of the Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum - Nature, 56

>Faucher, K., Parmentier, É., Becco, C., Vandewalle, N., & Vandewalle, P. (2010). Fish lateral system is required for accurate control of shoaling behaviour. Animal Behaviour, 79(3), 679–687. https://doi.org/10.1016/j.anbehav.2009.12.020 

>Dugatkin, L. A. (2008). Antipredation behavior. In Elsevier eBooks (pp. 218–221). https://doi.org/10.1016/b978-008045405-4.00004-5

>Kear, B. P. (2007). First record of a pachycormid fish (Actinopterygii : Pachycormiformes) from the Lower Cretaceous of Australia. Journal of Vertebrate Paleontology. https://doi.org/10.1671/0272-4634(2007)27

>Liston, J., Newbrey, M. G., Challands, T. J., & Adams, C. E. (2013). Growth, age and size of the Jurassic pachycormid Leedsichthys problematicus (Osteichthyes: Actinopterygii). In Verlag Dr. Friedrich Pfeil eBooks. https://www.pfeil-verlag.de/07pala/pdf/4_59d06.pdf

>Kear, B. P., Boles, W., & Smith, E. T. (2003). Unusual gut contents in a Cretaceous ichthyosaur. Proceedings of the Royal Society B: Biological Sciences, 270(suppl_2). https://doi.org/10.1098/rsbl.2003.0050

>Eriksson, M. E., De La Garza, R. G., Horn, E., & Lindgren, J. (2022). A review of ichthyosaur (Reptilia, Ichthyopterygia) soft tissues with implications for life reconstructions. Earth-Science Reviews, 226, 103965. https://doi.org/10.1016/j.earscirev.2022.103965

>Lindgren, J., Sjövall, P., Thiel, V., Zheng, W., Itô, S., Wakamatsu, K., Hauff, R. B., Kear, B. P., Engdahl, A., Alwmark, C., Eriksson, M. E., Jarenmark, M., Sachs, S., Ahlberg, P., Marone, F., Kuriyama, T., Gustafsson, O., Malmberg, P., Thomen, A., . . . Schweitzer, M. H. (2018). Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature, 564(7736), 359–365. https://doi.org/10.1038/s41586-018-0775-x

>Miedema, F., Klein, N., Blackburn, D. G., Sander, P. M., Maxwell, E. E., Griebeler, E. M., & Scheyer, T. M. (2023). Heads or tails first? Evolution of fetal orientation in ichthyosaurs, with a scrutiny of the prevailing hypothesis. BMC Ecology and Evolution, 23(1). https://doi.org/10.1186/s12862-023-02110-4

>Moon, B. C., & Stubbs, T. L. (2020). Early high rates and disparity in the evolution of ichthyosaurs. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-0779-6

>Buchy, M., Frey, E., & Salisbury, S. W. (2006). The internal cranial anatomy of the Plesiosauria (Reptilia, Sauropterygia): evidence for a functional secondary palate. Lethaia, 39(4), 289–303. https://doi.org/10.1080/00241160600847488

>Marek, R. D., Moon, B. C., Williams, M., & Benton, M. J. (2015). The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology, 58(4), 723–742. https://doi.org/10.1111/pala.12174

>Monahan, C. F., Garner, M. M., & Kiupel, M. (2022). Chromatophoromas in reptiles. Veterinary Sciences, 9(3), 115. https://doi.org/10.3390/vetsci9030115

>Wretman, L., & Kear, B. P. (2013). Bite marks on an ichthyodectiform fish from Australia: possible evidence of trophic interaction in an Early Cretaceous marine ecosystem. Alcheringa, 38(2), 170–176. https://doi.org/10.1080/03115518.2014.848692

>Vavrek, M. J., Murray, A. M., & Bell, P. R. (2016). Xiphactinus audax Leidy 1870 from the Puskwaskau Formation (Santonian to Campanian) of northwestern Alberta, Canada and the distribution of Xiphactinus in North America. Vertebrate Anatomy, Morphology, Palaeontology. https://doi.org/10.18435/b5h596

>Fish. (n.d.). Kronosaurus Korner. https://www.kronosauruskorner.com.au/museum/collections/fish

>Bartholomai, A. (2004). The large aspidorhynchid fish Richmondichthys sweeti (Etheridge Jr and Smith Woodward, 1891) from Albian marine deposits of Queensland, Australia. Memoirs of the Queensland Museum, 49.

>Schultze, H. (2016). Scales, enamel, Cosmine, Ganoine, and early Osteichthyans. Comptes Rendus Palevol, 15(1–2), 83–102. https://doi.org/10.1016/j.crpv.2015.04.001

>Structure of the oral tissues. (2013). In Elsevier eBooks (pp. 1–13). https://doi.org/10.1016/b978-0-323-07846-7.00001-x

>Holgado, B., & Pêgas, R. V. (2020). A taxonomic and phylogenetic review of the anhanguerid pterosaur group Coloborhynchinae and the new clade Tropeognathinae. Acta Palaeontologica Polonica, 65. https://doi.org/10.4202/app.00751.2020

>Paul, G. S. (2022). The Princeton Field Guide to Pterosaurs. In Princeton University Press eBooks. https://doi.org/10.1515/9780691232218

>Myers, T. S. (2017). DIET OF ORNITHOCHEIROID PTEROSAURS INFERRED FROM STABLE CARBON ISOTOPE ANALYSIS OF TOOTH ENAMEL. GSA Annual Meeting in Seattle, Washington, USA - 2017. https://doi.org/10.1130/abs/2017am-305496

>Latil, J.-L., Murphy, M. A., & Rodda, P. U. (2023). A review of Beudanticeras Hitzel, 1902 (Cretaceous Ammonitida), and its occurrence in the Cottonwood District of Northern California. Paleontología Mexicana, 12(2).

>Kruta, I., Landman, N. H., Rouget, I., Cecca, F., & Tafforeau, P. (2011). The role of ammonites in the Mesozoic marine food web revealed by Jaw Preservation. Science, 331(6013), 70–72. https://doi.org/10.1126/science.1198793

>Knight, R. I., Morris, N. J., Todd, J. A., Howard, L. E., & Ball, A. D. (2013). Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: systematic and palaeobiological implications. Palaeontology, 57(1), 37–54. https://doi.org/10.1111/pala.12046

>Everhart, M. (2011). Inoceramids. Oceans of Kansas Paleontology. http://oceansofkansas.com/Inoceramids.html

>Liu, Y. (2001b). Pearl. In Elsevier eBooks (pp. 6781–6783). https://doi.org/10.1016/b0-08-043152-6/01200-6

>Wilson, G. D. F., Paterson, J. R., & Kear, B. P. (2011). Fossil isopods associated with a fish skeleton from the Lower Cretaceous of Queensland, Australia – direct evidence of a scavenging lifestyle in Mesozoic Cymothoida. Palaeontology, 54(5), 1053–1068. https://doi.org/10.1111/j.1475-4983.2011.01095.x 

>Wetzel, R. G. (2001). BENTHIC ANIMALS AND FISH COMMUNITIES. In Limnology (pp. 665–730). https://doi.org/10.1016/b978-0-08-057439-4.50026-5 

>Coleman, D. C., Crossley, D., & Hendrix, P. F. (2004). Secondary production: Activities of Heterotrophic Organisms—The soil fauna. In Elsevier eBooks (pp. 79–185). https://doi.org/10.1016/b978-012179726-3/50005-8 

>Rameshkumar, G., & Ravichandran, S. (2012). Problems caused by isopod parasites in commercial fishes. Journal of Parasitic Diseases, 38(1), 138–141. https://doi.org/10.1007/s12639-012-0210-4 

>Rowley, A. F., & Coates, C. J. (2023). Shell disease syndromes of decapod crustaceans. Environmental Microbiology, 25(5), 931–947. https://doi.org/10.1111/1462-2920.16344 

>Gruen, D. S., Wolfe, J. M., & Fournier, G. P. (2019). Paleozoic diversification of terrestrial chitin-degrading bacterial lineages. BMC Evolutionary Biology, 19(1). https://doi.org/10.1186/s12862-019-1357-8 

>Mittal, M., Tripathi, S., Saini, A., & Mani, I. (2023). Phage for treatment of Vibrio cholerae infection. Progress in Molecular Biology and Translational Science, 21–39. https://doi.org/10.1016/bs.pmbts.2023.03.021 

>Bartlett, T. M., Bratton, B. P., Duvshani, A., Miguel, A., Sheng, Y., Martin, N. R., Nguyen, J. P., Persat, A., Desmarais, S. M., VanNieuwenhze, M. S., Huang, K. C., Zhu, J., Shaevitz, J. W., & Gitai, Z. (2017). A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell, 168(1–2), 172-185.e15. https://doi.org/10.1016/j.cell.2016.12.019 

>Kivistö, A. T., & Karp, M. T. (2010). Halophilic anaerobic fermentative bacteria. Journal of Biotechnology, 152(4), 114–124. https://doi.org/10.1016/j.jbiotec.2010.08.014 

>Richards, T. M., Stumkat, P. E., & Salisbury, S. W. (2021). A new species of crested pterosaur (Pterodactyloidea, Anhangueridae) from the Lower Cretaceous (upper Albian) of Richmond, North West Queensland, Australia. Journal of Vertebrate Paleontology, 41(3). https://doi.org/10.1080/02724634.2021.1946068

>Richards, T. M., Stumkat, P. E., & Salisbury, S. W. (2023). A second specimen of the pterosaur Thapunngaka shawi from the Lower Cretaceous (upper Albian) Toolebuc Formation of North West Queensland, Australia. Cretaceous Research, 105740. https://doi.org/10.1016/j.cretres.2023.105740

>Martin‐Silverstone, E., Sykes, D., & Naish, D. (2018). Does postcranial palaeoneurology provide insight into pterosaur behaviour and lifestyle? New data from the azhdarchoid Vectidraco and the ornithocheirids Coloborhynchus and Anhanguera. Palaeontology, 62(2), 197–210. https://doi.org/10.1111/pala.12390

>Kear, B. P. (2005). First gut contents in a Cretaceous sea turtle. Biology Letters, 2(1), 113–115. https://doi.org/10.1098/rsbl.2005.0374

>Cadena, E., & Parham, J. F. (2015). Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. PaleoBios, 32. https://doi.org/10.5070/p9321028615

>Lutcavage, M. E., & Lutz, P. L. (1991). Voluntary diving metabolism and ventilation in the loggerhead sea turtle. Journal of Experimental Marine Biology and Ecology, 147(2), 287–296. https://doi.org/10.1016/0022-0981(91)90187-2

>Lohmann, K. J., & Lohmann, C. M. F. (2019). There and back again: natal homing by magnetic navigation in sea turtles and salmon. The Journal of Experimental Biology, 222(Suppl_1). https://doi.org/10.1242/jeb.184077

>Paul, G. S. (2016). The Princeton Field Guide to dinosaurs: Second Edition. Princeton University Press.

>Poole, K. (2022). Phylogeny of iguanodontian dinosaurs and the evolution of quadrupedality. Palaeontologia Electronica. https://doi.org/10.26879/702

>Witton, M. (2022b, January 31). The silent dinosaur hypothesis. Mark P. Witton’s Blog. http://markwitton-com.blogspot.com/2022/01/the-silent-dinosaur-hypothesis.html   

>Gleich, O., Dooling, R. J., & Manley, G. A. (2005). Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs. Naturwissenschaften, 92(12), 595–598. https://doi.org/10.1007/s00114-005-0050-5

>Soto‐Acuña, S., Vargas, A. O., Kaluza, J., Leppe, M., Botelho, J. F., Palma-Liberona, J., Simon-Gutstein, C., Fernández, R. A., Ortiz, H. J. B., Milla, V., Aravena, B., Manríquez, L., Alarcón-Muñoz, J., Pino, J. P., Trevisan, C., Mansilla, H. D., Hinojosa, L. F., Muñoz-Walther, V., & Rubilar-Rogers, D. (2021). Bizarre tail weaponry in a transitional ankylosaur from subantarctic Chile. Nature, 600(7888), 259–263. https://doi.org/10.1038/s41586-021-04147-1

>Botfalvai, G., Prondvai, E., & Ősi, A. (2021). Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs. Cretaceous Research, 118, 104633. https://doi.org/10.1016/j.cretres.2020.104633

>O’Connor, J. K. (2009). A systematic review of Enantiornithes (Aves: Ornithothoraces). University of Southern California.

>Hartman, S. A., Mortimer, M., Wahl, W. R., Lomax, D. R., Lippincott, J., & Lovelace, D. M. (2019). A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ, 7, e7247. https://doi.org/10.7717/peerj.7247

>Barba-Montoya, J., Reis, M. D., Schneider, H., Donoghue, P. C. J., & Yang, Z. (2018). Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist, 218(2), 819–834. https://doi.org/10.1111/nph.15011

>Simpson, M. G. (2010). Diversity and classification of flowering plants. In Elsevier eBooks (pp. 181–274). https://doi.org/10.1016/b978-0-12-374380-0.50007-5

>Simpson, M. G. (2019). Diversity and classification of flowering plants: Eudicots. In Elsevier eBooks (pp. 285–466). https://doi.org/10.1016/b978-0-12-812628-8.50008-0

>Dashko, S., Zhou, N., Compagno, C., & Piškur, J. (2014). Why, when, and how did yeast evolve alcoholic fermentation? Fems Yeast Research, 14(6), 826–832. https://doi.org/10.1111/1567-1364.12161

>Shurson, G. (2017). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology, 235, 60–76. https://doi.org/10.1016/j.anifeedsci.2017.11.010 

>Loxdale, H. D., Balog, A., & Biron, D. G. (2020). Aphids in focus: unravelling their complex ecology and evolution using genetic and molecular approaches. Biological Journal of the Linnean Society, 129(3), 507–531. https://doi.org/10.1093/biolinnean/blz194

>Von Dohlen, C. D. (2000). Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biological Journal of the Linnean Society, 71(4), 689–717. https://doi.org/10.1006/bijl.2000.0470

>Poinar, G. (2014). Evolutionary History of Terrestrial Pathogens and Endoparasites as Revealed in Fossils and Subfossils. Advances in Biology, 2014(1), 181353. https://doi.org/10.1155/2014/181353  

>What are rust fungi? (n.d.). Purdue University - College of Agriculture. https://ag.purdue.edu/department/btny/herbaria/arthur/arthur_rust_fungi.html 

>Horton, J. S., Bakkeren, G., Klosterman, S. J., Garcia-Pedrajas, M., & Gold, S. E. (2005). Genetics of morphogenesis in basidiomycetes. In Applied mycology and biotechnology (pp. 353–422). https://doi.org/10.1016/s1874-5334(05)80017-6 

>Shattock, R. (2003). DISEASE | Rust. In Elsevier eBooks (pp. 165–169). https://doi.org/10.1016/b0-12-227620-5/00088-4 

>Staples, R. C. (2001). Nutrients for a rust fungus: the role of haustoria. Trends in Plant Science, 6(11), 496–498. https://doi.org/10.1016/s1360-1385(01)02126-4 

>Gibbs, A. (1999). Evolution and origins of tobamoviruses. Philosophical Transactions of the Royal Society B Biological Sciences, 354(1383), 593–602. https://doi.org/10.1098/rstb.1999.0411 

>Tolin, S. (2008). Tobacco viruses. In Elsevier eBooks (pp. 60–67). https://doi.org/10.1016/b978-012374410-4.00575-6 

>Bertin, S., Faggioli, F., Gentili, A., Manglli, A., Taglienti, A., Tiberini, A., & Tomassoli, L. (2021). Emerging and Re-Emerging plant viruses. In Elsevier eBooks (pp. 8–20). https://doi.org/10.1016/b978-0-12-809633-8.21532-x 

>Chen, X., & Van Achterberg, C. (2019). Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 years of progress. Annual Review of Entomology, 64(1), 335–358. https://doi.org/10.1146/annurev-ento-011118-111856

>Webb, B., & Strand. (2005). The Biology and Genomics of Polydnaviruses. In Elsevier eBooks (pp. 323–360). https://doi.org/10.1016/b0-44-451924-6/00086-7 

>Ren, D., Labandeira, C. C., Santiago-Blay, J. A., Rasnitsyn, A. P., Shih, C., Bashkuev, A. S., Logan, M. a. V., Hotton, C. L., & Dilcher, D. L. (2009). A Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies. Science, 326(5954), 840–847. https://doi.org/10.1126/science.1178338

>Reis, R. E. D., & Helfman, G. S. (2023). Fishes, Biodiversity of. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-822562-2.00092-x

>Orgeig, S., & Daniels, C. B. (1995). The evolutionary significance of pulmonary surfactant in lungfish (Dipnoi). American Journal of Respiratory Cell and Molecular Biology, 13(2), 161–166. https://doi.org/10.1165/ajrcmb.13.2.7626285

>Daniels, C. B., Orgeig, S., Sullivan, L. C., Ling, N., Bennett, M. B., Schürch, S., Val, A. L., & Brauner, C. J. (2004). The Origin and Evolution of the Surfactant System in Fish: Insights into the Evolution of Lungs and Swim Bladders. Physiological and Biochemical Zoology, 77(5), 732–749. https://doi.org/10.1086/422058

>Prange, H. D. (2003). LAPLACE’S LAW AND THE ALVEOLUS: A MISCONCEPTION OF ANATOMY AND A MISAPPLICATION OF PHYSICS. Advances in Physiology Education, 27(1), 34–40. https://doi.org/10.1152/advan.00024.2002

>Bi, X., Wang, K., Yang, L., Pan, H., Jiang, H., Wei, Q., Fang, M., Yu, H., Zhu, C., Cai, Y., He, Y., Gan, X., Zeng, H., Yu, D., Yuanlin, Z., Jiang, H., Qiu, Q., Yang, H., Zhang, Y. E., . . . Zhang, G. (2021). Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell, 184(5), 1377-1391.e14. https://doi.org/10.1016/j.cell.2021.01.046

>Wang, X., Kellner, A. W. A., Jiang, S., Cheng, X., Wang, Q., Ma, Y., Paidoula, Y., Rodrigues, T., Chen, H., Sayão, J. M., Li, N., Zhang, J., Bantim, R. a. M., Meng, X., Zhang, X., Qiu, R., & Zhou, Z. (2017). Egg accumulation with 3D embryos provides insight into the life history of a pterosaur. Science, 358(6367), 1197–1201. https://doi.org/10.1126/science.aan2329

>Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S., & Friedman, M. (2016). Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nature Communications, 7(1). https://doi.org/10.1038/ncomms10825

>Schumacher, B. A. (2011). A ‘Woollgari-Zone Mosasaur’ (Squamata; Mosasauridae) from the Carlile Shale (Lower Middle Turonian) of Central Kansas and the Stratigraphic Overlap of Early Mosasaurs and Pliosaurid Plesiosaurs. Transactions of the Kansas Academy of Science, 114(1 & amp; 2), 1–14. https://doi.org/10.1660/062.114.0101