Sources: Four-Month Darkness
*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Four-Month Darkness:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>K/T extinction. (n.d.). http://www.scotese.com/K/t.htm
>Flaig, P. P., Mccarthy, P. J., & Fiorillo, A. R. (2013). Anatomy, Evolution, and Paleoenvironmental Interpretation of an Ancient Coastal Plain: Integrated Paleopedology and Palynology from the Upper Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska, USA. In SEPM (Society for Sedimentary Geology) eBooks (pp. 179–230). https://doi.org/10.2110/sepmsp.104.14
>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503
>Herman, A. B., Spicer, R. A., & Spicer, T. E. (2016). Environmental constraints on terrestrial vertebrate behaviour and reproduction in the high Arctic of the Late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 317–338. https://doi.org/10.1016/j.palaeo.2015.09.041
>Druckenmiller, P. S., Erickson, G. M., Brinkman, D. B., Brown, C. M., & Eberle, J. J. (2021). Nesting at extreme polar latitudes by non-avian dinosaurs. Current Biology, 31(16), 3469-3478.e5. https://doi.org/10.1016/j.cub.2021.05.041
>Paul, G. S. (2016). The Princeton Field Guide to dinosaurs: Second Edition. Princeton University Press.
>Fiorillo, A. R., & Tykoski, R. S. (2012). A new Maastrichtian species of the Centrosaurine Ceratopsid Pachyrhinosaurus from the north slope of Alaska. Acta Palaeontologica Polonica, 57(3), 561–573. https://doi.org/10.4202/app.2011.0033
>Tykoski, R. S., Fiorillo, A. R., & Chiba, K. (2019). New data and diagnosis for the Arctic ceratopsid dinosaur Pachyrhinosaurus perotorum. Journal of Systematic Palaeontology, 17(16), 1397–1416. https://doi.org/10.1080/14772019.2018.1532464
>Hartman, S. A., Mortimer, M., Wahl, W. R., Lomax, D. R., Lippincott, J., & Lovelace, D. M. (2019). A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ, 7, e7247. https://doi.org/10.7717/peerj.7247
>Perry, Z. R. (2023). A reinterpretation of Nanuqsaurus hoglundi (Tyrannosauridae) from the late cretaceous Prince Creek formation, northern Alaska. Thesis (M.S.) University of Alaska Fairbanks. http://hdl.handle.net/11122/14645
>Molina-Pérez, R., Larramendi, A., Connolly, D., & Cruz, G. Á. R. (2019). Dinosaur facts and figures: The Theropods and Other Dinosauriformes. Princeton University Press.
>Therrien, F., Zelenitsky, D. K., Tanaka, K., Voris, J. T., Erickson, G. M., Currie, P. J., DeBuhr, C. L., & Kobayashi, Y. (2023). Exceptionally preserved stomach contents of a young tyrannosaurid reveal an ontogenetic dietary shift in an iconic extinct predator. Science Advances, 9(49). https://doi.org/10.1126/sciadv.adi0505
>Titus, A. L., Knoll, K., Sertich, J. J. W., Yamamura, D., Suarez, C. A., Glasspool, I. J., Ginouves, J. E., Lukacic, A. K., & Roberts, E. M. (2021). Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness. PeerJ, 9, e11013. https://doi.org/10.7717/peerj.11013
>Dinets, V. (2014). Apparent coordination and collaboration in cooperatively hunting crocodilians. Ethology Ecology & Evolution, 27(2), 244–250. https://doi.org/10.1080/03949370.2014.915432
>Witton, M. (2022, January 31). The silent dinosaur hypothesis. Mark P. Witton’s Blog. http://markwitton-com.blogspot.com/2022/01/the-silent-dinosaur-hypothesis.html
>Naish, D. (2016, November 14). The ridiculous nasal anatomy of giant horned dinosaurs. Scientific American Blog Network. https://blogs.scientificamerican.com/tetrapod-zoology/the-ridiculous-nasal-anatomy-of-giant-horned-dinosaurs/
>Choi, C. Q. (2023, July 18). Auroras across the solar system are powered in the same way, Mercury results suggest. Space.com. https://www.space.com/auroras-similar-cause-throughout-solar-system-mercury-results
>Aizawa, S., Harada, Y., André, N., Saito, Y., Barabash, S., Delcourt, D., Sauvaud, J. A., Barthe, A., Fedorov, A., Penou, E., Yokota, S., Miyake, W., Persson, M., Nénon, Q., Rojo, M., Futaana, Y., Asamura, K., Shimoyama, M., Hadid, L., . . . Murakami, G. (2023). Direct evidence of substorm-related impulsive injections of electrons at Mercury. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39565-4
>Solar Wind. (n.d.). Space Technology 5. https://www.jpl.nasa.gov/nmp/st5/SCIENCE/solarwind.html
>Electricity & magnetism. (n.d.). Northwestern University. https://faculty.wcas.northwestern.edu/infocom/Ideas/electric.html
>NASA Satellites Discover what powers northern lights - NASA. (n.d.). NASA. https://www.nasa.gov/news-release/nasa-satellites-discover-what-powers-northern-lights-2/
>What is magnetic reconnection? (n.d.). Princeton Plasma Physics Laboratory. https://mrx.pppl.gov/Physics/physics.html
>Borovsky, J. E. (2021). Magnetospheric Plasma Systems Science and Solar Wind Plasma Systems Science: The Plasma-Wave Interactions of Multiple particle Populations. Frontiers in Astronomy and Space Sciences, 8. https://doi.org/10.3389/fspas.2021.780321
>Auroras on Mars - NASA Science. (n.d.). https://science.nasa.gov/science-research/planetary-science/11may_aurorasonmars/
>Fiorillo, A. R., & Gangloff, R. A. (2001). Theropod teeth from the Prince Creek Formation (Cretaceous) of northern Alaska, with speculations on Arctic Dinosaur paleoecology. Journal of Vertebrate Paleontology, 20(4), 675–682. https://doi.org/10.1671/0272-4634(2000)020
>Fowler, D. W., Freedman, E. A., Scannella, J. B., & Kambic, R. E. (2011). The predatory ecology of Deinonychus and the origin of flapping in birds. PLOS ONE, 6(12), e28964. https://doi.org/10.1371/journal.pone.0028964
>Eberle, J. J., Clemens, W. A., McCarthy, P. J., Fiorillo, A. R., Erickson, G. M., & Druckenmiller, P. S. (2019). Northernmost record of the Metatheria: a new Late Cretaceous pediomyid from the North Slope of Alaska. Journal of Systematic Palaeontology, 17(21), 1805–1824. https://doi.org/10.1080/14772019.2018.1560369
>Eizirik, E. (2016). Mammalian diversification. In Elsevier eBooks (pp. 418–423). https://doi.org/10.1016/b978-0-12-800049-6.00283-3
>Eberle, J. J., Clemens, W. A., Erickson, G. M., & Druckenmiller, P. S. (2023). A new tiny eutherian from the Late Cretaceous of Alaska. Journal of Systematic Palaeontology, 21(1). https://doi.org/10.1080/14772019.2023.2232359
>Rothwell, G. W., Stockey, R. A., & Smith, S. Y. (2020). Revisiting the Late Cretaceous Parataxodium wigginsii flora from the North Slope of Alaska, a high-latitude temperate forest. Cretaceous Research, 116, 104592. https://doi.org/10.1016/j.cretres.2020.104592
>Halliday, T. J. D., Upchurch, P., & Goswami, A. (2015). Resolving the relationships of Paleocene placental mammals. Biological Reviews, 92(1), 521–550. https://doi.org/10.1111/brv.12242
>Fiorillo, A. R. (2008). On the Occurrence of Exceptionally Large Teeth of Troodon (Dinosauria: Saurischia) from the Late Cretaceous of Northern Alaska. PALAIOS, 23(5), 322–328. https://doi.org/10.2110/palo.2007.p07-036r
>Cullen, T. M., & Cousens, B. (2023). New biogeochemical insights into Mesozoic terrestrial paleoecology and evidence for omnivory in troodontid dinosaurs. Geological Society of America Bulletin. https://doi.org/10.1130/b37077.1
>Hernández, A. T., Wilkinson, R., Arbour, V. M., Ruiz‐Omeñaca, J. I., & Currie, P. J. (2018). Puncture-and-Pull biomechanics in the teeth of predatory coelurosaurian dinosaurs. Current Biology, 28(9), 1467-1474.e2. https://doi.org/10.1016/j.cub.2018.03.042
>Currie, P. J., & Evans, D. C. (2019). Cranial Anatomy of New Specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 303(4), 691–715. https://doi.org/10.1002/ar.24241
>Robinson, I. (2009). Seabirds. In Elsevier eBooks (pp. 377–403). https://doi.org/10.1016/b978-0-7020-2874-8.00016-x
>Proctor, H. C., & Owens, I. I. (2000). Mites and birds: diversity, parasitism and coevolution. Trends in Ecology & Evolution, 15(9), 358–364. https://doi.org/10.1016/s0169-5347(00)01924-8
>Dunlop, J. A., & Garwood, R. J. (2017). Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society B Biological Sciences, 373(1739), 20160493. https://doi.org/10.1098/rstb.2016.0493
>Arribas, P., Andujar, C., Moraza, M. L., Linard, B., Emerson, B. C., & Vogler, A. P. (2019). Mitochondrial Metagenomics Reveals the Ancient Origin and Phylodiversity of Soil Mites and Provides a Phylogeny of the Acari. Molecular Biology and Evolution, 37(3), 683–694. https://doi.org/10.1093/molbev/msz255
>Mezentseva, N. V., Kumaratilake, J., & Newman, S. A. (2008). The brown adipocyte differentiation pathway in birds: An evolutionary road not taken. BMC Biology, 6(1). https://doi.org/10.1186/1741-7007-6-17
>Rey, B., Roussel, D., Romestaing, C., Belouze, M., Rouanet, J., Desplanches, D., Sibille, B., Servais, S., & Duchamp, C. (2010). Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC Physiology, 10(1), 5. https://doi.org/10.1186/1472-6793-10-5
>Lane, N. (2018). Hot mitochondria? PLOS Biology, 16(1), e2005113. https://doi.org/10.1371/journal.pbio.2005113
>Munoz, X., & Druckenmiller, P. (2023). A new look at the mammalian fauna from the Prince Creek Formation of Alaska. University of Alaska Fairbanks. https://www.uaf.edu/ursa/research-day/2023-rca-day/2023_rcaday_posters/CNSM_Munoz%20Xochitl_Poster.pdf
>Weaver, L. N., Wilson, G. P., Krumenacker, L. J., Mclaughlin, K., Moore, J. R., & Varricchio, D. J. (2019). New multituberculate mammals from the mid-Cretaceous (lower Cenomanian) Wayan Formation of southeastern Idaho and implications for the early evolution of Cimolodonta. Journal of Vertebrate Paleontology, 39(2), e1604532. https://doi.org/10.1080/02724634.2019.1604532
>Weaver, L. N., Fulghum, H. Z., Grossnickle, D. M., Brightly, W. H., Kulik, Z. T., Mantilla, G. P. W., & Whitney, M. R. (2022). Multituberculate mammals show evidence of a life history strategy similar to that of placentals, not marsupials. The American Naturalist, 200(3), 383–400. https://doi.org/10.1086/720410
>Fiorillo, A. R., McCarthy, P. J., Kobayashi, Y., Tomsich, C. S., Tykoski, R. S., Lee, Y., Tanaka, T., & Noto, C. R. (2018). An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30110-8
>Qin, Z., Liao, C., Benton, M. J., & Rayfield, E. J. (2023). Functional space analyses reveal the function and evolution of the most bizarre theropod manual unguals. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04552-4
>Nilsson, O. (2022). Winter dormancy in trees. Current Biology, 32(12), R630–R634. https://doi.org/10.1016/j.cub.2022.04.011
>Engelmann, W. (2009). Bio-Calendar - The year in the life of plants and animals. University of Tübingen. https://publikationen.uni-tuebingen.de/xmlui/handle/10900/49252
>Lowe, A. (2019). Why do trees lose their leaves? The University of Adelaide. https://set.adelaide.edu.au/news/list/2019/11/12/why-do-trees-lose-their-leaves
>Button, D., & Zanno, L. E. (2023). Neuroanatomy of the late Cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45658-3
>Evans, D. C., Schott, R. K., Larson, D. W., Brown, C. M., & Ryan, M. J. (2013). The oldest North American pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs. Nature Communications, 4(1). https://doi.org/10.1038/ncomms2749
>Peterson, J. E., Dischler, C., & Longrich, N. R. (2013). Distributions of cranial pathologies provide evidence for Head-Butting in Dome-Headed dinosaurs (Pachycephalosauridae). PLOS ONE, 8(7), e68620. https://doi.org/10.1371/journal.pone.0068620
>Watanabe, A., Erickson, G. M., & Druckenmiller, P. S. (2013). An ornithomimosaurian from the Upper Cretaceous Prince Creek Formation of Alaska. Journal of Vertebrate Paleontology, 33(5), 1169–1175. https://doi.org/10.1080/02724634.2013.770750
>Kobayashi, Y., & Lü, J. (2003). A new ornithomimid dinosaur with gregarious habits from the Late Cretaceous of China. Acta Palaeontologica Polonica, 48(2). http://www.app.pan.pl/archive/published/app48/app48-235.pdf
>Wosik, M., & Evans, D. C. (2022). Osteohistological and taphonomic life‐history assessment of Edmontosaurus annectens (Ornithischia: Hadrosauridae) from the Late Cretaceous (Maastrichtian) Ruth Mason dinosaur quarry, South Dakota, United States, with implication for ontogenetic segregation between juvenile and adult hadrosaurids. Journal of Anatomy, 241(2), 272–296. https://doi.org/10.1111/joa.13679
>Mallon, J. C. (2019). Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-51709-5
>Witton, M. P., & Naish, D. (2008). A reappraisal of Azhdarchid pterosaur functional Morphology and paleoecology. PLOS ONE, 3(5), e2271. https://doi.org/10.1371/journal.pone.0002271
>Benton, M. J. (2021). The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research, 100, 261–289. https://doi.org/10.1016/j.gr.2020.08.003
>Hone, D. W. E., Habib, M. B., & Therrien, F. (2019). Cryodrakon boreas, gen. et sp. nov., a Late Cretaceous Canadian azhdarchid pterosaur. Journal of Vertebrate Paleontology, 39(3), e1649681. https://doi.org/10.1080/02724634.2019.1649681
>Chin, K., Feldmann, R. M., & Tashman, J. N. (2017). Consumption of crustaceans by megaherbivorous dinosaurs: dietary flexibility and dinosaur life history strategies. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11538-w
>Grigoriev, D. V., & Grabovskiy, A. A. (2020). Arctic mosasaurs (Squamata, Mosasauridae) from the Upper Cretaceous of Russia. Cretaceous Research, 114, 104499. https://doi.org/10.1016/j.cretres.2020.104499
>Fiorillo, A. R., Hasiotis, S. T., Kobayashi, Y., Breithaupt, B. H., & McCarthy, P. J. (2011). Bird tracks from the Upper Cretaceous Cantwell Formation of Denali National Park, Alaska, USA: a new perspective on ancient northern polar vertebrate biodiversity. Journal of Systematic Palaeontology, 9(1), 33–49. https://doi.org/10.1080/14772019.2010.509356
>McCain, S. (2015). Charadriiformes. In Elsevier eBooks (pp. 112–116). https://doi.org/10.1016/b978-1-4557-7397-8.00015-3
>Wolff, E. D. S., Salisbury, S. W., Horner, J. R., & Varricchio, D. J. (2009). Common avian infection plagued the tyrant dinosaurs. PLOS ONE, 4(9), e7288. https://doi.org/10.1371/journal.pone.0007288
>Chen, X., Li, Y., Song, J., Han, S., & He, H. (2023). Trichomonas gallinae Kills Host Cells Using Trogocytosis. Pathogens, 12(8), 1008. https://doi.org/10.3390/pathogens12081008
>Tasca, T., & De Carli, G. A. (2003). Scanning electron microscopy study of Trichomonas gallinae. Veterinary Parasitology, 118(1–2), 37–42. https://doi.org/10.1016/j.vetpar.2003.09.009
>Menezes, C. B., Frasson, A. P., & Tasca, T. (2016). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526
>Hjort, K., Goldberg, A. V., Tsaousis, A. D., Hirt, R. P., & Embley, T. M. (2010). Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philosophical Transactions - Royal Society. Biological Sciences, 365(1541), 713–727. https://doi.org/10.1098/rstb.2009.0224
>Brown, J. H. (2013). Why are there so many species in the tropics? Journal of Biogeography, 41(1), 8–22. https://doi.org/10.1111/jbi.12228
>Peters, M. K., Hemp, A., Appelhans, T., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Haas, M., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Mwangomo, E., Ngereza, C., Otte, I., Röder, J., Rutten, G., . . . Steffan-Dewenter, I. (2016). Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 7(1). https://doi.org/10.1038/ncomms13736
>Dillon, S. R. (n.d.). The rates of chemical reactions. Florida State University. https://www.chem.fsu.edu/chemlab/chm1020c/Lecture%208/01.php
>Tagliavento, M., Davies, A., Bernecker, M., Staudigel, P. T., Dawson, R. R., Dietzel, M., Götschl, K., Guo, W., Schulp, A. S., Therrien, F., Zelenitsky, D. K., Gerdes, A., Müller, W., & Fiebig, J. (2023). Evidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod. Proceedings of the National Academy of Sciences of the United States of America, 120(15). https://doi.org/10.1073/pnas.2213987120
>Varricchio, D. J., Jackson, F. D., Borkowski, J. J., & Horner, J. R. (1997). Nest and egg clutches of the dinosaur Troodon formosus and the evolution of avian reproductive traits. Nature, 385(6613), 247–250. https://doi.org/10.1038/385247a0
>Dinets, V., Brueggen, J., & Brueggen, J. (2013). Crocodilians use tools for hunting. Ethology Ecology & Evolution, 27(1), 74–78. https://doi.org/10.1080/03949370.2013.858276
>Witton, M. (2015, February 8). Controversial ceratopsids revisited: woolly Pachyrhinosaurus and scavenging Styracosaurus. https://markwitton-com.blogspot.com/2015/02/controversial-ceratopsids-revisited.html
>Longrich, N. R., Tokaryk, T. T., & Field, D. J. (2011). Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15253–15257. https://doi.org/10.1073/pnas.1110395108
>Nicholson, U., Powell, W., Gulick, S., Kenkmann, T., Bray, V. J., Duarte, D., & Collins, G. S. (2024). 3D anatomy of the Cretaceous–Paleogene age Nadir Crater. Communications Earth & Environment, 5(1), 1-12. https://doi.org/10.1038/s43247-024-01700-4
>Landman, N. H., Garb, M. P., Rovelli, R., Ebel, D. S., & Edwards, L. E. (2012). Short-Term survival of ammonites in New Jersey after the End-Cretaceous bolide impact. Acta Palaeontologica Polonica, 57(4), 703–715. https://doi.org/10.4202/app.2011.0068