Sources: Middle of a Golden Age

*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources. 


Middle of a Golden Age:

>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw

>Late Jurassic. (n.d.). http://www.scotese.com/late1.htm

>Noto, C. R., & Grossman, A. (2010). Broad-Scale Patterns of Late Jurassic Dinosaur Paleoecology. PLOS ONE, 5(9), e12553. https://doi.org/10.1371/journal.pone.0012553

>Aberhan, M., Bussert, R., Heinrich, W., Schrank, E., Schultka, S., Sames, B., Kriwet, J., & Kapilima, S. (2001). Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania). Fossil Record, 5(1), 19–44. https://doi.org/10.5194/fr-5-19-2002

>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503

>Delcourt, R. (2018). Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28154-x

>Wang, S., Stiegler, J., Amiot, R., Wang, X., Du, G., Clark, J. M., & Xu, X. (2016). Extreme Ontogenetic Changes in a Ceratosaurian Theropod. Current Biology, 27(1), 144–148. https://doi.org/10.1016/j.cub.2016.10.043

>Janensch, W. (1925). The Coelurosaurs and Theropods of the Tendaguru Formation-German East Africa. Palaeontographica. https://naturalhistory.si.edu/sites/default/files/media/translated_publications/Janensch_25.pdf

>Knaust, D. (2010). Remarkably preserved benthic organisms and their traces from a Middle Triassic (Muschelkalk) mud flat. Lethaia, 43(3), 344–356. https://doi.org/10.1111/j.1502-3931.2009.00196.x

>Kem, W. R. (2012). Worm Peptides. In Elsevier eBooks (pp. 483–487). https://doi.org/10.1016/b978-0-12-385095-9.00065-8

>Fauchald, K., & Jumars, P. A. (1978). The Diet of Worms: A Study of Polychaete Feeding Guilds. ResearchGate. https://www.researchgate.net/publication/255608624_The_Diet_of_Worms_A_Study_of_Polychaete_Feeding_Guilds

>Zanol, J., Fauchald, K., & Paiva, P. C. (2007). A phylogenetic analysis of the genus Eunice (Eunicidae, polychaete, Annelida). Zoological Journal of the Linnean Society, 150(2), 413–434. https://doi.org/10.1111/j.1096-3642.2007.00302.x 

>Eriksson, M. E., Parry, L. A., & Rudkin, D. M. (2017). Earth’s oldest ‘Bobbit worm’ – gigantism in a Devonian eunicidan polychaete. Scientific Reports, 7(1). https://doi.org/10.1038/srep43061 

>Stanley, G. D. (2006). Photosymbiosis and the Evolution of Modern Coral Reefs. Science, 312(5775), 857–858. https://doi.org/10.1126/science.1123701

>Montefalcone, M., Oprandi, A., Azzola, A., Morri, C., & Bianchi, C. N. (2021). Serpulid reefs and their role in aquatic ecosystems: A global review. In Advances in Marine Biology (pp. 1–54). https://doi.org/10.1016/bs.amb.2022.06.001

>Martens, K., & Horne, D. J. (2008). Ostracoda. In Elsevier eBooks (pp. 405–414). https://doi.org/10.1016/b978-012370626-3.00184-8

>Wang, H., Matzke-Karasz, R., Horne, D. J., Zhao, X., Cao, M., Zhang, H., & Wang, B. (2020). Exceptional preservation of reproductive organs and giant sperm in Cretaceous ostracods. Proceedings of the Royal Society B: Biological Sciences, 287(1935), 20201661. https://doi.org/10.1098/rspb.2020.1661

>Paul, G. S. (2016). The Princeton Field Guide to Dinosaurs: Second Edition. Princeton University Press.

>Phillips, J. B. (1990). Lek behaviour in birds: do displaying males reduce nest predation? Animal Behaviour, 39(3), 555–565. https://doi.org/10.1016/s0003-3472(05)80422-1

>Vinther, J., Nicholls, R. D., & Kelly, D. A. (2021). A cloacal opening in a non-avian dinosaur. Current Biology, 31(4), R182–R183. https://doi.org/10.1016/j.cub.2020.12.039

>Escapa, I. H., & Leslie, A. B. (2017). A new Cheirolepidiaceae (Coniferales) from the Early Jurassic of Patagonia (Argentina): Reconciling the records of impression and permineralized fossils. American Journal of Botany, 104(2), 322–334. https://doi.org/10.3732/ajb.1600321

>Molina-Pérez, R., & Larramendi, A. (2020). Dinosaur facts and figures: The Sauropods and Other Sauropodomorphs. Princeton University Press.

>Wiemann, J., Menéndez, I., Crawford, J. M., Fabbri, M., Gauthier, J. A., Hull, P. M., Norell, M. A., & Briggs, D. E. G. (2022). Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature, 606(7914), 522–526. https://doi.org/10.1038/s41586-022-04770-6

>Ren, D., Labandeira, C. C., Santiago-Blay, J. A., Rasnitsyn, A. P., Shih, C., Bashkuev, A. S., Logan, M. a. V., Hotton, C. L., & Dilcher, D. L. (2009). A Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies. Science, 326(5954), 840–847. https://doi.org/10.1126/science.1178338

>Tihelka, E., Giacomelli, M., Huang, D., Pisani, D., Donoghue, P. C. J., & Cai, C. (2020). Fleas are parasitic scorpionflies. Palaeoentomology, 3(6), 641–653. https://doi.org/10.11646/palaeoentomology.3.6.16 

>Averianov, A. O., & Martin, T. (2015). Ontogeny and taxonomy of Paurodon valens (Mammalia, Cladotheria) from the Upper Jurassic Morrison Formation of USA. Trudy Zoologičeskogo Instituta, 319(3), 326–340. https://doi.org/10.31610/trudyzin/2015.319.3.326

>Lasseron, M., Martin, T., Allain, R., Haddoumi, H., Jalil, N., Zouhri, S., & Gheerbrant, E. (2022). An African Radiation of ‘Dryolestoidea’ (Donodontidae, Cladotheria) and its Significance for Mammalian Evolution. Journal of Mammalian Evolution, 29(4), 733–761. https://doi.org/10.1007/s10914-022-09613-9

>Renfree, M. B. (2010). Review: Marsupials: Placental Mammals with a Difference. Placenta, 31, S21–S26. https://doi.org/10.1016/j.placenta.2009.12.023

>Brawand, D., Wahli, W., & Kaessmann, H. (2008). Loss of Egg Yolk Genes in Mammals and the Origin of Lactation and Placentation. PLOS Biology, 6(3), e63. https://doi.org/10.1371/journal.pbio.0060063

>Cabreira, S. F., Schultz, C. L., Da Silva, L. R., Lora, L. H. P., Pakulski, C., Rêgo, R. C. B. D., Soares, M. B., Smith, M. M., & Richter, M. (2022). Diphyodont tooth replacement of Brasilodon —A Late Triassic eucynodont that challenges the time of origin of mammals. Journal of Anatomy, 241(6), 1424–1440. https://doi.org/10.1111/joa.13756

>Ryu, W. S. (2017). Retroviruses. In Molecular Virology of Human Pathogenic Viruses. https://doi.org/10.1016/b978-0-12-800838-6.00017-5

>Lavialle, C., Cornelis, G., Dupressoir, A., Esnault, C., Heidmann, O., Vernochet, C., & Heidmann, T. (2013). Paleovirology of ‘ syncytins ’, retroviral env genes exapted for a role in placentation. Philosophical Transactions of the Royal Society B, 368(1626), 20120507. https://doi.org/10.1098/rstb.2012.0507

>Cornelis, G., Funk, M., Vernochet, C., Leal, F., Tarazona, O. A., Meurice, G., Heidmann, O., Dupressoir, A., Miralles, A., Ramírez-Pinilla, M. P., & Heidmann, T. (2017). An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proceedings of the National Academy of Sciences of the United States of America, 114(51). https://doi.org/10.1073/pnas.1714590114

>Sander, P. M., Christian, A., Clauss, M., Fechner, R., Gee, C. T., Griebeler, E. M., Gunga, H., Hummel, J., Mallison, H., Perry, S. F., Preuschoft, H., Rauhut, O. W. M., Remes, K., Tütken, T., Wings, O., & Witzel, U. (2010). Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews, 86(1), 117–155. https://doi.org/10.1111/j.1469-185x.2010.00137.x

>Wings, O., & Sander, P. M. (2006). No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. Proceedings of the Royal Society B: Biological Sciences, 274(1610), 635–640. https://doi.org/10.1098/rspb.2006.3763

>Hübner, T., & Rauhut, O. W. M. (2010). A juvenile skull of Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia), and implications for cranial ontogeny, phylogeny, and taxonomy in ornithopod dinosaurs. Zoological Journal of the Linnean Society, 160(2), 366–396. https://doi.org/10.1111/j.1096-3642.2010.00620.x

>Hübner, T., Foth, C., Heinrich, W., Schwarz, D., & Bussert, R. (2020). Research history, taphonomy, and age structure of a mass accumulation of the ornithopod dinosaur Dysalotosaurus lettowvorbecki from the Upper Jurassic of Tanzania. Acta Palaeontologica Polonica, 66. https://doi.org/10.4202/app.00687.2019

>Witzmann, F., Claeson, K. M., Hampe, O., Wieder, F., Hilger, A., Manke, I., Niederhagen, M., Rothschild, B. M., & Asbach, P. (2011). Paget disease of bone in a Jurassic dinosaur. Current Biology, 21(17), R647–R648. https://doi.org/10.1016/j.cub.2011.08.006

>Sabharwal, R., Gupta, S., Sepolia, S., Panigrahi, R., Mohanty, S., Subudhi, S. K., & Kumar, M. (2013). An Insight in to Paget’s Disease of Bone. DOAJ (DOAJ: Directory of Open Access Journals). https://doi.org/10.4103/1117-6806.127098

>Florencio-Silva, R., Da Silva Sasso, G. R., Sasso-Cerri, E., De Jesus Simões, M., & Cerri, P. S. (2014). Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015, 1–17. https://doi.org/10.1155/2015/421746

>Molina-Pérez, R., Larramendi, A., Connolly, D., & Cruz, G. Á. R. (2019). Dinosaur facts and figures: The Theropods and Other Dinosauriformes. Princeton University Press.

>Rauhut, O. W. M. (2011). Theropod dinosaurs from the Late Jurassic of Tendaguru (Tanzania). Special Papers in Paleontology. https://doi.org/10.1111/j.1475-4983.2011.01084.x

>Canale, J. I., Apesteguía, S., Gallina, P. A., Mitchell, J. S., Smith, N. D., Cullen, T. M., Shinya, A., Haluza, A., Gianechini, F. A., & Makovicky, P. J. (2022). New giant carnivorous dinosaur reveals convergent evolutionary trends in theropod arm reduction. Current Biology, 32(14), 3195-3202.e5. https://doi.org/10.1016/j.cub.2022.05.057

>Redelstorff, R., Hübner, T., Chinsamy, A., & Sander, P. M. (2013). Bone Histology of the Stegosaur Kentrosaurus aethiopicus (Ornithischia: Thyreophora) from the Upper Jurassic of Tanzania. Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology, 296(6), 933–952. https://doi.org/10.1002/ar.22701

>Mallison, H. (2010). CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus Hennig 1915. Swiss Journal of Geosciences, 103(2), 211–233. https://doi.org/10.1007/s00015-010-0024-2

>Mallison, H. (2011). Defense capabilities of Kentrosaurus aethiopicus Hennig, 1915. Palaeontologia Electronica. https://palaeo-electronica.org/2011_2/255/index.html

>Perry, G. L. (2020). How far might plant-eating dinosaurs have moved seeds? Biology Letters, 17(1), 20200689. https://doi.org/10.1098/rsbl.2020.0689

>Larrea, M. I. S. A., Larrea, M. D. S. A., & Olivos-Oré, L. A. (2021). Plants, Poisonous (Animals). In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-824315-2.00143-3

>Dörken, V. M., Nimsch, H., & Rudall, P. J. (2018). Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. Annals of Botany, 123(1), 133–143. https://doi.org/10.1093/aob/mcy150

>Mustoe, G. E. (2007). Coevolution of cycads and dinosaurs. The Cycad Newsletter, 30(1). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0ydrgtuiJAxULFrkGHWgTLyQQFnoECBUQAw&url=https%3A%2F%2Fwww.torreyaguardians.org%2Fcycad.pdf&usg=AOvVaw0YWdwf53AbHNr5mJUNbMP3&opi=89978449 

>Brown, D. L., Van Wettere, A. J., & Cullen, J. M. (2017). Hepatobiliary system and exocrine pancreas. In Elsevier eBooks (pp. 412-470.e1). https://doi.org/10.1016/b978-0-323-35775-3.00008-4 

>Hone, D. W. E., & Holtz, T. R. (2017). A Century of Spinosaurs - A Review and Revision of the Spinosauridae with Comments on Their Ecology. Acta Geologica Sinica-english Edition, 91(3), 1120–1132. https://doi.org/10.1111/1755-6724.13328

>Thies, D., Stevens, K., & Stumpf, S. (2019). Stomach contents of the Early Jurassic fish †Lepidotes Agassiz, 1832 (Actinopterygii, Lepisosteiformes) and their palaeoecological implications. Historical Biology, 1–12. https://doi.org/10.1080/08912963.2019.1665040

>Costa, F. R., & Kellner, A. W. A. (2009). On two pterosaur humeri from the Tendaguru beds (Upper Jurassic, Tanzania). Anais Da Academia Brasileira De Ciencias, 81(4), 813–818. https://doi.org/10.1590/s0001-37652009000400017

>Witton, M. (2016, April 29). The lives and times of flying reptiles as told by the fossil record, part 2: Rhamphorhynchus muensteri. Mark P. Witton’s Blog. http://markwitton-com.blogspot.com/2016/04/the-lives-and-times-of-flying-reptiles.html

>Schmitz, L., & Motani, R. (2011). Nocturnality in Dinosaurs Inferred from Scleral Ring and Orbit Morphology. Science, 332(6030), 705–708. https://doi.org/10.1126/science.1200043

>Bestwick, J., Unwin, D. M., Butler, R. J., & Purnell, M. A. (2020). Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19022-2

>Hone, D. W. E., Ratcliffe, J. M., Riskin, D. K., Hermanson, J. W., & Reisz, R. R. (2020). Unique near isometric ontogeny in the pterosaur Rhamphorhynchus suggests hatchlings could fly. Lethaia, 54(1), 106–112. https://doi.org/10.1111/let.12391 

>Unwin, D. M., & Heinrich, W. (1998). On a pterosaur jaw from the Upper Jurassic of Tendaguru (Tanzania). Fossil Record, 2(1), 121–134. https://doi.org/10.5194/fr-2-121-1999

>Whitlock, J. A. (2011). Inferences of Diplodocoid (Sauropoda: Dinosauria) Feeding Behavior from Snout Shape and Microwear Analyses. PLOS ONE, 6(4), e18304. https://doi.org/10.1371/journal.pone.0018304

>Conti, S., Tschopp, E., Mateus, O., Zanoni, A., Masarati, P., & Sala, G. (2022). Multibody analysis and soft tissue strength refute supersonic dinosaur tail. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-21633-2

>Witton, M. (2022b, January 31). The silent dinosaur hypothesis. Mark P. Witton’s Blog. http://markwitton-com.blogspot.com/2022/01/the-silent-dinosaur-hypothesis.html

>Gleich, O., Dooling, R. J., & Manley, G. A. (2005). Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs. Naturwissenschaften, 92(12), 595–598. https://doi.org/10.1007/s00114-005-0050-5

>Woodruff, D. C., Carr, T. D., Storrs, G. W., Waskow, K., Scannella, J. B., Nordén, K. K., & Wilson, J. P. (2018). The Smallest Diplodocid Skull Reveals Cranial Ontogeny and Growth-Related Dietary Changes in the Largest Dinosaurs. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32620-x

>Wings, O. (2014). The rarity of gastroliths in sauropod dinosaurs – a case study in the Late Jurassic Morrison Formation, western USA. Fossil Record, 18(1), 1–16. https://doi.org/10.5194/fr-18-1-2015

>Truman, J. W., & Riddiford, L. M. (2019). The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B, 374(1783), 20190070. https://doi.org/10.1098/rstb.2019.0070

>Dwyer, J. R., & Uman, M. A. (2013). The physics of lightning. Physics Reports, 534(4), 147–241. https://doi.org/10.1016/j.physrep.2013.09.004

>Jensenius Jr., J. (n.d.). Understanding lightning. National Weather Service. https://www.weather.gov/safety/lightning-science-scienceintro

>Module 2 - Radiation Basics. (n.d.). Naval Postgraduate School. https://www.met.nps.edu/~psguest/EMEO_online/module2/module_2_3.html

>Ting, D. S. (2021). Thermal radiation. In Elsevier eBooks (pp. 357–372). https://doi.org/10.1016/b978-0-323-90626-5.00012-4

>Atoms and Light Energy. (n.d.). Imagine the Universe! https://imagine.gsfc.nasa.gov/educators/lessons/xray_spectra/background-atoms.html

>Tanke, D. H., & Currie, P. J. (1998). Head-biting behavior in theropod dinosaurs: Paleopathological evidence. GAIA - Ecological Perspectives for Science and Society. https://doi.org/10.7939/r34t6fj1p

>Drumheller, S. K., McHugh, J., Kane, M., Riedel, A., & D’Amore, D. C. (2020). High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem. PLOS ONE, 15(5), e0233115. https://doi.org/10.1371/journal.pone.0233115

>Cau, A. (2021, September 7). Carcharodontosauri d’Italia. Theropoda. https://theropoda.blogspot.com/2021/09/carcharodontosauri-ditalia.html

>Cau, A. (2021). Comments on the Mesozoic theropod dinosaurs from Italy. ResearchGate. https://www.researchgate.net/publication/354418322_Comments_on_the_Mesozoic_theropod_dinosaurs_from_Italy

>Mateus, O. (2006). Late Jurassic dinosaurs from the Morrison formation (USA), the Lourinha and Alcobaca Formations (Portugal), and the Tendaguru Beds (Tanzania): a comparison. New Mexico Museum of Natural History and Science Bulletin. https://www.researchgate.net/publication/40662981_Late_Jurassic_dinosaurs_from_the_Morrison_formation_USA_the_Lourinha_and_Alcobaca_Formations_Portugal_and_the_Tendaguru_Beds_Tanzania_a_comparison 

>Danison, A. D., Wedel, M. J., Barta, D. E., Woodward, H. N., Flora, H. M., Lee, A. H., & Snively, E. (2024). Chimerism in specimens referred to Saurophaganax maximus reveals a new species of Allosaurus (Dinosauria, Theropoda). Vertebrate Anatomy Morphology Palaeontology, 12(1). https://doi.org/10.18435/vamp29404