Sources: New Beginning

*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources. 


New Beginning:

>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw

>Triassic. (n.d.). http://www.scotese.com/newpage8.htm

>Rodrigues, I. C., Mizusaki, A. M. P., Lima, L. G., & Maraschin, A. J. (2019). Comparative evolution of clay minerals in southern Paraná Basin (Brazil): Implications for triassic paleoclimate. Journal of South American Earth Sciences, 90, 181–190. https://doi.org/10.1016/j.jsames.2018.12.012

>Pierini, C., Mizusaki, A. M. P., Scherer, C. M. D. S., & Alves, D. B. (2002). Integrated stratigraphic and geochemical study of the Santa Maria and Caturrita formations (Triassic of the Paraná Basin), southern Brazil. Journal of South American Earth Sciences, 15(6), 669–681. https://doi.org/10.1016/s0895-9811(02)00114-1

>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503

>Olsen, P. E., Sha, J., Fang, Y., Chang, C., Whiteside, J. H., Kinney, S., Sues, H., Kent, D. V., Schaller, M. F., & Vajda, V. (2022). Arctic ice and the ecological rise of the dinosaurs. Science Advances, 8(26). https://doi.org/10.1126/sciadv.abo6342

>Benton, M. J. (2021). The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Research, 100, 261–289. https://doi.org/10.1016/j.gr.2020.08.003

>Aureliano, T., Ghilardi, A. M., Müller, R. T., Kerber, L., Pretto, F. A., Fernandes, M. A., Ricardi-Branco, F., & Wedel, M. (2022). The absence of an invasive air sac system in the earliest dinosaurs suggests multiple origins of vertebral pneumaticity. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25067-8

>Guerra-Sommer, M., Cazzulo-Klepzig, M., & Darosa, A. (2009a). Passo das Tropas - Marco bioestratigráfico triássico na evolução paleoflorística do Gondwana na Bacia do Paraná. Sítios Geológicos E Paleontológicos Do Brasil, 084. https://sigep.eco.br/sitio084/sitio084_impresso.pdf

>Damiani Pinto, I. (1956). ARTRÓPODOS DA FORMAÇÃO SANTA MARIA (TRIÁSSICO SUPERIOR) DO RIO GRANDE DO SUL, COM NOTÍCIAS SOBRE ALGUNS RESTOS VEGETAIS. Boletim Da Sociedade Brasileira De Geologia, 5(1). http://boletim.siteoficial.ws/pdf/1956/5_1-75-95.pdf

>Davranoglou, L., Mortimer, B., Taylor, G. K., & Malenovský, I. (2019). On the morphology and possible function of two putative vibroacoustic mechanisms in derbid planthoppers (Hemiptera: Fulgoromorpha: Derbidae). Arthropod Structure & Development, 52, 100880. https://doi.org/10.1016/j.asd.2019.100880

>Vajda, V., Pucetaite, M., McLoughlin, S., Engdahl, A., Heimdal, J., & Uvdal, P. (2017). Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature Ecology and Evolution, 1(8), 1093–1099. https://doi.org/10.1038/s41559-017-0224-5

>Rothwell, G. W., Crepet, W. L., & Stockey, R. A. (2008). Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. American Journal of Botany, 96(1), 296–322. https://doi.org/10.3732/ajb.0800209

>Abarca-Vargas, R., & Petricevich, V. L. (2018). Bougainvillea Genus: A Review on Phytochemistry, Pharmacology, and Toxicology. Evidence-based Complementary and Alternative Medicine, 2018, 1–17. https://doi.org/10.1155/2018/9070927

>Simpson, M. G. (2009). Evolution and Diversity of Woody and Seed Plants. In Elsevier eBooks (pp. 129–162). https://doi.org/10.1016/b978-0-12-374380-0.50005-1

>Pole, M., Li, Y., Bugdaeva, E. V., Dong, C., Tian, N., Li, L., & Zhou, N. (2016). The rise and demise of Podozamites in east Asia—An extinct conifer life style. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 97–109. https://doi.org/10.1016/j.palaeo.2016.02.037

>Fielding, C. R., Frank, T. D., McLoughlin, S., Vajda, V., Mays, C., Tevyaw, A. P., Winguth, A., Winguth, C., Nicoll, R. S., Bocking, M., & Crowley, J. L. (2019). Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-07934-z

>Pole, M. (2014). Cladophlebis – New Zealand’s Mesozoic Weed. MikePole. http://www.mikepole.com/2014/06/22/cladophlebis-new-zealands-mesozoic-weed/

>Husby, C., & Walkowiak, R. (2012). An Introduction to the Genus Equisetum (Horsetail) and the Class Equisetopsida (Sphenopsida) as a whole. ResearchGate. https://doi.org/10.13140/RG.2.2.11669.52961

>De Simão-Oliveira, D., Pinheiro, F. L., Andrade, M. B. D., & Pretto, F. A. (2022). Redescription, taxonomic revaluation and phylogenetic affinities of Proterochampsa nodosa (Archosauriformes: Proterochampsidae) from the early Late Triassic of the Candelaria Sequence (Santa Maria Supersequence). Zoological Journal of the Linnean Society, 196(4), 1310–1332. https://doi.org/10.1093/zoolinnean/zlac048

>Arcucci, A. B., Previtera, E., & Mancuso, A. C. (2018). Ecomorphology and bone microstructure of Proterochampsia from the Chañares Formation. Acta Palaeontologica Polonica, 64. https://doi.org/10.4202/app.00536.2018

>Ponce, D., Trotteyn, M. J., Cerda, I. A., Fiorelli, L. E., & Desojo, J. B. (2021). Osteohistology and paleobiological inferences of proterochampsids (Eucrocopoda: Proterochampsia) from the Chañares Formation (late Ladinian–early Carnian), La Rioja, Argentina. Journal of Vertebrate Paleontology, 41(2). https://doi.org/10.1080/02724634.2021.1926273

>Benton, M. J. (1983). The Triassic reptile Hyperodapedon from Elgin: functional morphology and relationships. Philosophical Transactions of the Royal Society of London, 302(1112), 605–718. https://doi.org/10.1098/rstb.1983.0079

>Veiga De Oliveira, T., Schultz, C. L., & Bento Soares, M. (2007). O esqueleto pós-craniano de Exaeretodon riograndensis Abdala et al. (Cynodontia, Traversodontidae), Triássico do Brasil. Revista Brasileira De Paleontologia, 10(2). https://lume.ufrgs.br/bitstream/handle/10183/26209/000601343.pdf?sequence=1

>Wynd, B. M., Abdala, F., & Nesbitt, S. J. (2022). Ontogenetic growth in the crania of Exaeretodon argentinus (Synapsida: Cynodontia) captures a dietary shift. PeerJ, 10, e14196. https://doi.org/10.7717/peerj.14196

>Oftedal, O. T. (2011). The evolution of milk secretion and its ancient origins. Animal, 6(3), 355–368. https://doi.org/10.1017/s1751731111001935

>Vogel, G. (2018, July 17). Got milk? Even the first mammals knew how to suckle. Science. https://www.science.org/content/article/got-milk-even-first-mammals-knew-how-suckle

>De Oliveira, T. V., Soares, M. B., & Schultz, C. L. (2010). Trucidocynodon riograndensis gen. nov. et sp. nov. (Eucynodontia), a new cynodont from the Brazilian Upper Triassic (Santa Maria Formation). Zootaxa, 2382(1), 1. https://doi.org/10.11646/zootaxa.2382.1.1

>De Oliveira, T. V., & Schultz, C. L. (2014). Functional morphology and biomechanics of the cynodont Trucidocynodon riograndensis from the Triassic of southern Brazil. Part I. Pectoral girdle and forelimb. Acta Palaeontologica Polonica. https://doi.org/10.4202/app.00171.2015

>Hamblin, M. R. (2017). Alopecia. In Elsevier eBooks (pp. 751–762). https://doi.org/10.1016/b978-0-12-811353-0.00055-5

>Araújo, R., David, R., Benoit, J., Lungmus, J. K., Stoessel, A., Barrett, P. M., Maisano, J. A., Ekdale, E. G., Orliac, M. J., Luo, Z., Martinelli, A. G., Hoffman, E. A., Sidor, C. A., Martins, R. M. S., Spoor, F., & Angielczyk, K. D. (2022). Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature, 607(7920), 726–731. https://doi.org/10.1038/s41586-022-04963-z

>Cabreira, S. F., Kellner, A. W. A., Dias-Da-Silva, S., Da Silva, L. R., Bronzati, M., Marsola, J. C. A., Müller, R. T., Bittencourt, J. S., Batista, B. J. R., Raugust, T., Carrilho, R., Brodt, A., & Langer, M. C. (2016). A Unique Late Triassic Dinosauromorph Assemblage Reveals Dinosaur Ancestral Anatomy and Diet. Current Biology, 26(22), 3090–3095. https://doi.org/10.1016/j.cub.2016.09.040

>Baron, M. G. (2021). The origin of Pterosaurs. Earth-Science Reviews, 221, 103777. https://doi.org/10.1016/j.earscirev.2021.103777

>Novas, F. E., Agnolin, F., Ezcurra, M. D., Müller, R. T., Martinelli, A. G., & Langer, M. C. (2021). Review of the fossil record of early dinosaurs from South America, and its phylogenetic implications. Journal of South American Earth Sciences, 110, 103341. https://doi.org/10.1016/j.jsames.2021.103341

>Langer, M. C., Abdala, F., Richter, M., & Benton, M. J. (1999). A sauropodomorph dinosaur from the Upper Triassic (Carman) of southern Brazil. Comptes Rendus De L’Académie Des Sciences. Série 2. Sciences De La Terre Et Des Planètes, 329(7), 511–517. https://doi.org/10.1016/s1251-8050(00)80025-7

>Bronzati, M., Rauhut, O. W. M., Bittencourt, J. S., & Langer, M. C. (2017). Endocast of the Late Triassic (Carnian) dinosaur Saturnalia tupiniquim: implications for the evolution of brain tissue in Sauropodomorpha. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11737-5

>Grillo, O. N., & De Azevedo, S. a. K. (2011). Recovering missing data: estimating position and size of caudal vertebrae in Staurikosaurus pricei Colbert, 1970. Anais Da Academia Brasileira De Ciencias, 83(1), 61–72. https://doi.org/10.1590/s0001-37652011005000003

>Hsiou, A. S., Nydam, R. L., Simões, T. R., Pretto, F. A., Onary, S., Martinelli, A. G., Liparini, A., De Vivar Martínez, P. R. R., Soares, M. B., Schultz, C. L., & Caldwell, M. W. (2019). A New Clevosaurid from the Triassic (Carnian) of Brazil and the Rise of Sphenodontians in Gondwana. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48297-9

>Neto, V. D. P., Desojo, J. B., Brust, A. C. B., Schultz, C. L., Da-Rosa, Á. a. S., & Soares, M. B. (2020). Intraspecific variation in the axial skeleton of Aetosauroides scagliai (Archosauria: Aetosauria) and its implications for the aetosaur diversity of the Late Triassic of Brazil. Anais Da Academia Brasileira De Ciencias, 93(suppl 2). https://doi.org/10.1590/0001-3765202120201239

>Desojo, J. B., & Vizcaíno, S. F. (2009). Jaw biomechanics in the South American aetosaur Neoaetosauroides engaeus. Palaeontologische Zeitschrift, 83(4), 499–510. https://doi.org/10.1007/s12542-009-0032-6

>Müller, R. T., Von Baczko, M. B., Desojo, J. B., & Nesbitt, S. J. (2019). The first ornithosuchid from Brazil and its macroevolutionary and phylogenetic implications for Late Triassic faunas in Gondwana. Acta Palaeontologica Polonica, 65. https://doi.org/10.4202/app.00652.2019

>Nesbitt, S. J. (2011). The Early Evolution of Archosaurs: Relationships and the Origin of Major Clades. Bulletin of the American Museum of Natural History, 352, 1–292. https://doi.org/10.1206/352.1

>Lautenschlager, S., & Rauhut, O. W. M. (2014). Osteology of Rauisuchus tiradentes from the Late Triassic (Carnian) Santa Maria Formation of Brazil, and its implications for rauisuchid anatomy and phylogeny. Zoological Journal of the Linnean Society, 173(1), 55–91. https://doi.org/10.1111/zoj.12196

>Rigo, M., Onoue, T., Tanner, L. H., Lucas, S. G., Godfrey, L., Katz, M., Zaffani, M., Grice, K., Cesar, J., Yamashita, D., Maron, M., Tackett, L. S., Campbell, H. J., Tateo, F., Concheri, G., Agnini, C., Chiari, M., & Bertinelli, A. (2020). The Late Triassic Extinction at the Norian/Rhaetian boundary: Biotic evidence and geochemical signature. Earth-Science Reviews, 204, 103180. https://doi.org/10.1016/j.earscirev.2020.103180