Sources: Renewed World

*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources. 


Renewed World:

>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw

>Eocene. (n.d.). http://www.scotese.com/newpage9.htm

>Murphey, P., Townsend, K., Friscia, A., Westgate, J., Evanoff, E., & Gunnell, G. (2017). Paleontology and stratigraphy of Middle Eocene rock units in the southern Green River and Uinta Basins, Wyoming and Utah. Geology of the Intermountain West, 4, 1–53. https://doi.org/10.31711/giw.v4.pp1-53

>How the Tower Formed - Devils Tower National Monument (U.S. National Park Service). (n.d.). https://www.nps.gov/deto/learn/nature/tower-formation.htm 

>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503

>Guo, Z., Wilson, M., Dingwell, D. B., & Liu, J. (2021). India-Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23772-y

>Witmer, L. M., & Rose, K. D. (1991). Biomechanics of the jaw apparatus of the gigantic Eocene bird Diatryma: implications for diet and mode of life. Paleobiology, 17(2), 95–120. https://doi.org/10.1017/s0094837300010435

>Angst, D., Lécuyer, C., Amiot, R., Buffetaut, E., Fourel, F., Martineau, F., Legendre, S., Abourachid, A., & Herrel, A. (2014). Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems. Naturwissenschaften, 101(4), 313–322. https://doi.org/10.1007/s00114-014-1158-2

>Mölder, A., Meyer, P., & Nagel, R. (2019). Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. Forest Ecology and Management, 437, 324–339. https://doi.org/10.1016/j.foreco.2019.01.006

>Anadón, A., Martínez-Larrañaga, M. R., Ares, I., & Martínez, M. A. (2018). Poisonous plants of the Europe. In Elsevier eBooks (pp. 891–909). https://doi.org/10.1016/b978-0-12-811410-0.00062-3

>Ribeiro, M. M., Viganó, J., Meireles, M. a. A., & Veggi, P. C. (2022). Recent advances in the recovery of tannins from natural matter. In Studies in natural products chemistry (pp. 289–328). https://doi.org/10.1016/b978-0-323-91250-1.00008-2

>State Water Resources Control Board Clean Water Team. (n.d.). Color of Water Fact Sheet. California State Water Resources Control Board (.Gov). https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/3159.pdf

>Lepage, B. A., Currah, R. S., Stockey, R. A., & Rothwell, G. W. (1997). Fossil ectomycorrhizae from the Middle Eocene. American Journal of Botany, 84(3), 410–412. https://doi.org/10.2307/2446014

>Saritha, K., Prakash, B., Khilare, V., Khedkar, G., Reddy, Y. M., & Khedkar, C. (2016). Mushrooms and truffles: Role in the diet. In Elsevier eBooks (pp. 1–8). https://doi.org/10.1016/b978-0-12-384947-2.00473-6

>Song, A., Liu, J., Liang, S., Van, T., DO, Nguyen, H. B., Deng, W., Jia, L., Del Rio, C., Srivastava, G., Feng, Z., Zhou, Z., Huang, J., & Su, T. (2022). Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications. Plant Diversity, 44(4), 406–416. https://doi.org/10.1016/j.pld.2021.08.003

>Marmi, J., Gomez, B., Martín-Closas, C., & Villalba-Breva, S. (2010). A reconstruction of the fossil palm Sabalites longirhachis (Unger) J. Kvaček et Herman from the Maastrichtian of Pyrenees. Review of Palaeobotany and Palynology, 163(1–2), 73–83. https://doi.org/10.1016/j.revpalbo.2010.10.007

>McInerney, P. L., Blokland, J. C., & Worthy, T. H. (2024). Skull morphology of the enigmatic Genyornis newtoni Stirling and Zeitz, 1896 (Aves, Dromornithidae), with implications for functional morphology, ecology, and evolution in the context of Galloanserae. Historical Biology, 36(6), 1093–1165. https://doi.org/10.1080/08912963.2024.2308212

>Zhao, M., Kurtis, S. M., Humbel, E. A., Griffith, E. V., Liu, T., Braun, E. L., Buchholz, R., & Kimball, R. T. (2024). Bare parts in the Galliformes: the evolution of a multifunctional structure. Royal Society Open Science, 11(1). https://doi.org/10.1098/rsos.231695

>Paul, G. S. (2016). The Princeton Field Guide to dinosaurs: Second Edition. Princeton University Press.

>The Fossil Cycle. (n.d.). National Park Service. https://www.nps.gov/teachers/classrooms/the_fossil_cycle.htm

>Spaulding, M., O’Leary, M. A., & Gatesy, J. (2009). Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PloS One, 4(9), e7062. https://doi.org/10.1371/journal.pone.0007062

>Kitts, D. B. (1957). A revision of the genus Orohippus (Perrisodactyla, Equidae). American Museum novitates ; no. 1864. https://www.biodiversitylibrary.org/bibliography/90780

>Uchytel, R., & Uchytel, A. (n.d.). Mesonyx. Uchytel.com. https://uchytel.com/Mesonyx

>Radinsky, L. B. (1976). The brain of Mesonyx, a Middle Eocene mesonychid condylarth. Fieldiana Geology. https://doi.org/10.5962/bhl.title.5164

>Xun, J. (2012). New mesonychid (Mammalia) material from the lower Paleogene of the Erlian Basin, Nei Mongol, China. Vertebrata PalAsiatica, 50(3). http://www.irgrid.ac.cn/handle/1471x/921377

>Simpson, M. G. (2010). Diversity and classification of flowering plants: Eudicots. In Elsevier eBooks (pp. 275–448). https://doi.org/10.1016/b978-0-12-374380-0.50008-7

>Rieppel, o., & grande, l. (2007). The anatomy of the fossil varanid lizard Saniwa ensidens Leidy, 1870, based on a newly discovered complete skeleton. Journal of Paleontology, 81(4), 643–665. Https://doi.org/10.1666/pleo0022-3360(2007)081

>Schwenk, K. (1995). Of tongues and noses: chemoreception in lizards and snakes. Trends in Ecology & Evolution, 10(1), 7–12. https://doi.org/10.1016/s0169-5347(00)88953-3

>Smith, K. T., Bhullar, B. S., Köhler, G., & Habersetzer, J. (2018). The Only Known Jawed Vertebrate with Four Eyes and the Bauplan of the Pineal Complex. CB/Current Biology, 28(7), 1101-1107.e2. https://doi.org/10.1016/j.cub.2018.02.021

>Malabarba, L. R., & Malabarba, M. C. (2020). Phylogeny and classification of Neotropical fish. In Elsevier eBooks (pp. 1–19). https://doi.org/10.1016/b978-0-12-815872-2.00001-4

>Berkovitz, B., & Shellis, P. (2023). Bony fishes. In Elsevier eBooks (pp. 83–201). https://doi.org/10.1016/b978-0-323-91789-6.00003-0

>Elliott, D. (2011). THE SKIN | Functional Morphology of the integumentary system in fishes. In Elsevier eBooks (pp. 476–488). https://doi.org/10.1016/b978-0-12-374553-8.00108-8

>Helfman, G. S. (2001). Fish, Biodiversity of. In Elsevier eBooks (pp. 755–782). https://doi.org/10.1016/b0-12-226865-2/00120-6

>Zhang, H., Jarić, I., Roberts, D. L., He, Y., Du, H., Wu, J., Wang, C., & Wei, Q. (2020). Extinction of one of the world’s largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna. Science of the Total Environment, 710, 136242. https://doi.org/10.1016/j.scitotenv.2019.136242

>Cumberlidge, N., Hobbs, H. H., & Lodge, D. M. (2015). Class Malacostraca, order Decapoda. In Elsevier eBooks (pp. 797–847). https://doi.org/10.1016/b978-0-12-385026-3.00032-2                                                            

>Reynolds, J. D., Souty-Grosset, C., & Richardson, A. M. M. (2013). Ecological roles of crayfish in freshwater and terrestrial habitats. ResearchGate. https://www.researchgate.net/publication/259758408_Ecological_Roles_of_Crayfish_in_Freshwater_and_Terrestrial_Habitats

>Finlay, B., & Esteban, G. (1998). Freshwater protozoa: biodiversity and ecological function. Biodiversity and Conservation, 7(9), 1163–1186. https://doi.org/10.1023/a:1008879616066

>Introduction to the Ciliates. (n.d.). The George Washington University. https://www2.gwu.edu/~darwin/Ciliates/Introduction%20to%20ciliates/Intro.html

>Oliveira, G., La Scola, B., & Abrahão, J. (2019). Giant virus vs amoeba: fight for supremacy. Virology Journal, 16(1). https://doi.org/10.1186/s12985-019-1244-3 

>Brandes, N., & Linial, M. (2019). Giant Viruses—Big Surprises. Viruses, 11(5), 404. https://doi.org/10.3390/v11050404 

>Klose, T., Kuznetsov, Y. G., Xiao, C., Sun, S., McPherson, A., & Rossmann, M. G. (2010). The Three-Dimensional structure of Mimivirus. Intervirology, 53(5), 268–273. https://doi.org/10.1159/000312911 

>Silva, L. C. F., Rodrigues, R. a. L., Oliveira, G. P., Dornas, F. P., La Scola, B., Kroon, E. G., & Abrahão, J. S. (2019). Microscopic Analysis of the Tupanvirus Cycle in Vermamoeba vermiformis. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00671 

>Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D., & Bertilsson, S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 75(1), 14–49. https://doi.org/10.1128/mmbr.00028-10

>McGuire, A., Weiner, B., Park, S., Wapinski, I., Raman, S., Dolganov, G., Peterson, M., Riley, R., Zucker, J., Abeel, T., White, J., Sisk, P., Stolte, C., Koehrsen, M., Yamamoto, R. T., Iacobelli-Martinez, M., Kidd, M. J., Maer, A. M., Schoolnik, G. K., . . . Galagan, J. (2012). Comparative analysis of Mycobacterium and related actinomycetes yields insight into the evolution of Mycobacterium tuberculosis pathogenesis. BMC Genomics, 13(1), 120. https://doi.org/10.1186/1471-2164-13-120

>Kojima, K., & Sudo, Y. (2023). Convergent evolution of animal and microbial rhodopsins. RSC Advances, 13(8), 5367–5381. https://doi.org/10.1039/d2ra07073a

>Ganidi, N., Tyrrel, S., & Cartmell, E. (2009). Anaerobic digestion foaming causes – A review. Bioresource Technology, 100(23), 5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024

>Schuppler, M. (2014). How the interaction of Listeria monocytogenes and Acanthamoeba spp. affects growth and distribution of the food borne pathogen. Applied Microbiology and Biotechnology, 98(7), 2907–2916. https://doi.org/10.1007/s00253-014-5546-5 

>Hain, T., Chatterjee, S. S., Ghai, R., Kuenne, C. T., Billion, A., Steinweg, C., Domann, E., Kärst, U., Jänsch, L., Wehland, J., Eisenreich, W., Bacher, A., Joseph, B., Schär, J., Kreft, J., Klumpp, J., Loessner, M. J., Dorscht, J., Neuhaus, K., . . . Chakraborty, T. (2007). Pathogenomics of Listeria spp. International Journal of Medical Microbiology, 297(7–8), 541–557. https://doi.org/10.1016/j.ijmm.2007.03.016 

>Abdulkadieva, M. M., Sysolyatina, E. V., Vasilieva, E. V., Litvinenko, V. V., Kalinin, E. V., Zhukhovitsky, V. G., Shevlyagina, N. V., Andreevskaya, S. G., Stanishevskyi, Y. M., Vasiliev, M. M., Petrov, O. F., & Ermolaeva, S. A. (2023). Motility provides specific adhesion patterns and improves Listeria monocytogenes invasion into human HEp-2 cells. PLoS ONE, 18(8), e0290842. https://doi.org/10.1371/journal.pone.0290842 

>Khan, S., & Scholey, J. M. (2018). Assembly, functions and evolution of archaella, flagella and cilia. Current Biology, 28(6), R278–R292. https://doi.org/10.1016/j.cub.2018.01.085 

>Portnoy, D. A., Auerbuch, V., & Glomski, I. J. (2002). The cell biology of Listeria monocytogenes infection. The Journal of Cell Biology, 158(3), 409–414. https://doi.org/10.1083/jcb.200205009 

>Finlay, B. (2001). Ubiquitous microbes and ecosystem function. Limnética, 20(1), 31–43. https://doi.org/10.23818/limn.20.04

>Flora, G. W. (2021). Uintatherium anceps from the Uinta Formation, Piceance Creek Basin, Colorado With Implications on the morphological variation in Uintatherium anceps. Geological Sciences, University of Colorado Boulder. https://scholar.colorado.edu/concern/undergraduate_honors_theses/9s161744h

>Uchytel, R., & Uchytel, A. (n.d.). Uintatherium. Uchytel.com. https://uchytel.com/Mesonyx

>Burger, B. J. (2015). THE SYSTEMATIC POSITION OF THE SABER-TOOTHED AND HORNED GIANTS OF THE EOCENE:  THE UINTATHERES (ORDER DINOCERATA). Utah State University. http://www.benjamin-burger.org/wp-content/uploads/2019/12/SVP-Poster-Ben-Burger-2015.pdf

>Croft, D. A., Gelfo, J. N., & López, G. M. (2020). Splendid innovation: the extinct South American native ungulates. Annual Review of Earth and Planetary Sciences, 48(1), 259–290. https://doi.org/10.1146/annurev-earth-072619-060126

>Püschel, H. P., Shelley, S. L., Williamson, T. E., Perini, F. A., Wible, J. R., & Brusatte, S. L. (2024). A new dentition-based phylogeny of Litopterna (Mammalia: Placentalia) and ‘archaic’ South American ungulates. Zoological Journal of the Linnean Society, 202(1). https://doi.org/10.1093/zoolinnean/zlae095

>Werdelin, L. (2024). Hypercanines: Not just for sabertooths. The Anatomical Record. https://doi.org/10.1002/ar.25510

>Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20(5), 229–237. https://doi.org/10.1016/j.tree.2005.02.010 

>Pineda-Krch, M., & Poore, A. G. (2004). Spatial interactions within modular organisms: genetic heterogeneity and organism fitness. Theoretical Population Biology, 66(1), 25–36. https://doi.org/10.1016/j.tpb.2004.03.002 

>Dantas-Torres, F. (2018). Species Concepts: What about Ticks? Trends in Parasitology, 34(12), 1017–1026. https://doi.org/10.1016/j.pt.2018.09.009

>Anderson, J. F. (2002). The natural history of ticks. Medical Clinics of North America, 86(2), 205–218. https://doi.org/10.1016/s0025-7125(03)00083-x 

>Nishana, M., & Raghavan, S. C. (2012). Role of recombination activating genes in the generation of antigen receptor diversity and beyond. Immunology, 137(4), 271–281. https://doi.org/10.1111/imm.12009   

>Franchini, A., & Ottaviani, E. (2017). Thymus: Conservation in evolution. General and Comparative Endocrinology, 246, 46–50. https://doi.org/10.1016/j.ygcen.2017.03.011

>García, M. G. R., & Tamayó, F. G. (2013). The importance of the nurse cells and regulatory cells in the control of T lymphocyte responses. BioMed Research International, 2013, 1–15. https://doi.org/10.1155/2013/352414  

>Faria, A. M. C., Gomes-Santos, A. C., Gonçalves, J. L., Moreira, T. G., Medeiros, S. R., Dourado, L. P. A., & Cara, D. C. (2013). Food components and the immune system: from tonic agents to allergens. Frontiers in Immunology, 4. https://doi.org/10.3389/fimmu.2013.00102

>Rastogi, I., Jeon, D., Moseman, J. E., Muralidhar, A., Potluri, H. K., & McNeel, D. G. (2022). Role of B cells as antigen presenting cells. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.954936  

>Janeway, C. A., Jr, Travers, P., Walport, M., & Shlomchik, M. J. (2001). The major histocompatibility complex and its functions. Immunobiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK27156/ 

>Jalovecka, M., Sojka, D., Ascencio, M., & Schnittger, L. (2019). Babesia Life Cycle – When Phylogeny meets Biology. Trends in Parasitology, 35(5), 356–368. https://doi.org/10.1016/j.pt.2019.01.007  

>Pacheco, N. D. S., Tosetti, N., Koreny, L., Waller, R. F., & Soldati-Favre, D. (2020). Evolution, composition, assembly, and function of the conoid in Apicomplexa. Trends in Parasitology, 36(8), 688–704. https://doi.org/10.1016/j.pt.2020.05.001 

>Langreth, S. G. (1976). Feeding Mechanisms in Extracellular Babesia microti and Plasmodium lophurae. The Journal of Protozoology, 23(2), 215–223. https://doi.org/10.1111/j.1550-7408.1976.tb03758.x

>Vršanský, P., Bechly, G., Zhang, Q., Jarzembowski, E. A., Mlynský, T., Šmídová, L., Barna, P., Kúdela, M., Aristov, D., Bigalk, S., Krogmann, L., Li, L., Zhang, Q., Zhang, H., Ellenberger, S., Müller, P., Gröhn, C., Xia, F., Ueda, K., . . . Wang, B. (2018). Batesian insect-insect mimicry-related explosive radiation of ancient alienopterid cockroaches. Biologia, 73(10), 987–1006. https://doi.org/10.2478/s11756-018-0117-3

>Gibb, T. (2015). Insect identification techniques. In Elsevier eBooks (pp. 67–151). https://doi.org/10.1016/b978-0-12-404623-8.00004-1

>Desie, E., Van Meerbeek, K., De Wandeler, H., Bruelheide, H., Domisch, T., Jaroszewicz, B., Joly, F., Vancampenhout, K., Vesterdal, L., & Muys, B. (2020). Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Functional Ecology, 34(12), 2598–2610. https://doi.org/10.1111/1365-2435.13668

>Laverack, M. S. (1963). The physiology of earthworms. https://doi.org/10.5962/bhl.title.7450

>Porter, C., & AccuWeather. (2024, February 20). Why do earthworms surface after rain? Scientific American. https://www.scientificamerican.com/article/why-earthworms-surface-after-rain/

>Aletornis Marsh, 1872. (n.d.). GBIF | Global Biodiversity Information Facility. https://www.gbif.org/species/9605174

>Krajewski, C. (2019). Phylogenetic taxonomy of cranes and the evolutionary origin of the whooping crane. In Elsevier eBooks (pp. 17–24). https://doi.org/10.1016/b978-0-12-803555-9.00002-5

>Onary, S., Hsiou, A. S., Lee, M. S. Y., & Palci, A. (2021). Redescription, taxonomy and phylogenetic relationships of Boavus Marsh, 1871 (Serpentes: Booidea) from the early–middle Eocene of the USA. Journal of Systematic Palaeontology, 19(23), 1601–1622. https://doi.org/10.1080/14772019.2022.2068386

>Head, J. J., Bloch, J. I., Moreno-Bernal, J. W., & Bourque, J. R. (2013). Cranial osteology, Body Size, Systematics, and Ecology of the giant Paleocene Snake Titanoboa cerrejonensis. 73nd Annual Meeting of the Society of vertebrate Paleontology. https://www.researchgate.net/publication/280610583_Cranial_osteology_Body_Size_Systematics_and_Ecology_of_the_giant_Paleocene_Snake_Titanoboa_cerrejonensis

>Vitt, L. J., & Caldwell, J. P. (2014). Squamates—Part II. Snakes. In Elsevier eBooks (pp. 597–628). https://doi.org/10.1016/b978-0-12-386919-7.00022-8

>Cundall, D., & Greene, H. W. (2000). Feeding in snakes. In Elsevier eBooks (pp. 293–333). https://doi.org/10.1016/b978-012632590-4/50010-1

>Tomiya, S., Zack, S. P., Spaulding, M., & Flynn, J. J. (2021). Carnivorous mammals from the middle Eocene Washakie Formation, Wyoming, USA, and their diversity trajectory in a post-warming world. Journal of Paleontology, 95(S82), 1–115. https://doi.org/10.1017/jpa.2020.74

>Uchytel, R., & Uchytel, A. (n.d.). Sinopa. Uchytel.com. https://uchytel.com/Mesonyx

>Solé, F., Marandat, B., & Lihoreau, F. (2020). The hyaenodonts (Mammalia) from the French locality of Aumelas (Hérault), with possible new representatives from the late Ypresian. Geodiversitas, 42(13), 185. https://doi.org/10.5252/geodiversitas2020v42a13

>Morlo, M., Bastl, K., Wenhao, W., & Schaal, S. F. K. (2013). The first species of Sinopa (Hyaenodontida, Mammalia) from outside of North America: implications for the history of the genus in the Eocene of Asia and North America. Palaeontology, 57(1), 111–125. https://doi.org/10.1111/pala.12052

>Farias, K. S., Alves, F. M., Santos-Zanuncio, V. S., De Sousa, P. T., Jr, Silva, D. B., & Carollo, C. A. (2023). Global distribution of the chemical constituents and antibacterial activity of essential oils in Lauraceae family: A review. South African Journal of Botany, 155, 214–222. https://doi.org/10.1016/j.sajb.2023.02.028

>Cardoso-Ugarte, G. A., López-Malo, A., & Sosa-Morales, M. E. (2016). Cinnamon (Cinnamomum zeylanicum) Essential Oils. In Elsevier eBooks (pp. 339–347). https://doi.org/10.1016/b978-0-12-416641-7.00038-9

>Fan, Y., Lin, F., Zhang, R., Wang, M., Gu, R., & Long, C. (2022). Acer truncatum Bunge: A comprehensive review on ethnobotany, phytochemistry and pharmacology. Journal of Ethnopharmacology, 282, 114572. https://doi.org/10.1016/j.jep.2021.114572

>Bi, W., Gao, Y., Shen, J., He, C., Liu, H., Peng, Y., Zhang, C., & Xiao, P. (2016). Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): A review. Journal of Ethnopharmacology, 189, 31–60. https://doi.org/10.1016/j.jep.2016.04.021

>Simpson, M. G. (2010). Diversity and classification of flowering plants: Eudicots. In Elsevier eBooks (pp. 275–448). https://doi.org/10.1016/b978-0-12-374380-0.50008-7

>Ma, Q., Li, F., & Li, C. (2005). The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China. Review of Palaeobotany and Palynology, 135(3–4), 117–129. https://doi.org/10.1016/j.revpalbo.2005.03.002

>Sequoia affinis Reconconstruction - Florissant Fossil Beds National Monument (U.S. National Park Service). (n.d.). https://www.nps.gov/flfo/learn/nature/sequoia-affinis.htm

>Gunnell, G. F. (2002). Notharctine primates (Adapiformes) from the early to middle Eocene (Wasatchian–Bridgerian) of Wyoming: transitional species and the origins of Notharctus and Smilodectes. Journal of Human Evolution, 43(3), 353–380. https://doi.org/10.1006/jhev.2002.0582

>Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions - Royal Society. Biological Sciences, 364(1531), 2957–2967. https://doi.org/10.1098/rstb.2009.0039

>Kawamura, S., & Tachibanaki, S. (2022). Molecular bases of rod and cone differences. Progress in Retinal and Eye Research, 90, 101040. https://doi.org/10.1016/j.preteyeres.2021.101040

>Smith, N. A., DeBee, A. M., & Clarke, J. A. (2018). Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA. PeerJ, 6, e4950. https://doi.org/10.7717/peerj.4950

>Trupkiewicz, J., Garner, M. M., & Juan-Sallés, C. (2018). Passeriformes, Caprimulgiformes, Coraciiformes, Piciformes, Bucerotiformes, and Apodiformes. In Elsevier eBooks (pp. 799–823). https://doi.org/10.1016/b978-0-12-805306-5.00033-x

>Archibald, S. B., Johnson, K. R., Mathewes, R. W., & Greenwood, D. R. (2011). Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals. Proceedings - Royal Society. Biological Sciences, 278(1725), 3679–3686. https://doi.org/10.1098/rspb.2011.0729

>Archibald, S. B., Mathewes, R. W., & Aase, A. (2023). Eocene giant ants, Arctic intercontinental dispersal, and hyperthermals revisited: discovery of fossil Titanomyrma (Hymenoptera: Formicidae: Formiciinae) in the cool uplands of British Columbia, Canada. The Canadian Entomologist, 155. https://doi.org/10.4039/tce.2022.49

>Morgan, E. D., & Wilson, I. D. (1999). Insect Hormones and insect Chemical ecology. In Elsevier eBooks (pp. 263–375). https://doi.org/10.1016/b978-0-08-091283-7.00053-9 

>Kort, A. E. (2019). The Paleoecology of Patriofelis ulta and Implications for Oxyaenid Extinction. Department of Earth and Atmospheric Sciences, Indiana University. https://www.researchgate.net/publication/335611758_The_Paleoecology_of_Patriofelis_ulta_and_Implications_for_Oxyaenid_Extinction#pf7

>Smith, H. F., Adrian, B., Hutchison, J. H., & Townsend, K. B. (2016). Newly discovered cranial, postcranial, and shell specimens of Baena arenosa and Chisternon undatum from the Uinta Formation, Uinta Basin, Utah, USA: Insights into morphological variation at the end of the Baenid radiation. Society of Vertebrate Paleontology. https://www.researchgate.net/publication/309566855_Newly_discovered_cranial_postcranial_and_shell_specimens_of_Baena_arenosa_and_Chisternon_undatum_from_the_Uinta_Formation_Uinta_Basin_Utah_USA_Insights_into_morphological_variation_at_the_end_of_the_B