Sources: Start of an Eon
*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Start of an Eon:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Cambrian. (n.d.). http://www.scotese.com/newpage12.htm
>House Range Fossils Wheeler Shale, Marjum Formation Weeks Formation. (n.d.). http://www.fossilmuseum.net/Fossil_Sites/House-Range.htm
>House Range. (n.d.). https://ucmp.berkeley.edu/cambrian/house.html
>Servais, T., Cascales-Miñana, B., Harper, D. a. T., Lefebvre, B., Munnecke, A., Wang, W., & Zhang, Y. (2023). No (Cambrian) explosion and no (Ordovician) event: A single long-term radiation in the early Palaeozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 623, 111592. https://doi.org/10.1016/j.palaeo.2023.111592
>Bottjer, D. J. (2010). The cambrian substrate revolution and early evolution of the phyla. Journal of Earth Science, 21(S1), 21–24. https://doi.org/10.1007/s12583-010-0160-7
>Hill, M., & Hill, A. (2008). Porifera (Sponges). Elsevier eBooks, 423–432. https://doi.org/10.1016/b978-012370626-3.00186-1
>Fossil Sponges. (n.d.). http://www.fossilmuseum.net/Cambrian-Explosion/Choia-utahensis/CambrianExplosion-6.htm
>Botting, J. P. (2007). ‘Cambrian’ demosponges in the Ordovician of Morocco: Insights into the early evolutionary history of sponges. Geobios, 40(6), 737–748. https://doi.org/10.1016/j.geobios.2007.02.006
>Yun, H., Zhang, X., Brock, G. A., Li, L., & Li, G. (2021). Biomineralization of the Cambrian chancelloriids. Geology, 49(6), 623–628. https://doi.org/10.1130/g48428.1
>Janussen, D. (2002). New well-preserved scleritomes of Chancelloridae from the early Cambrian Yuanshan Formation (Chengjiang, China) and the middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications. Cambridge Core. https://doi.org/10.1666/0022-3360(2002)076
>Budd, G. E., & Jensen, S. R. (2007). A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75(2), 253–295. https://doi.org/10.1111/j.1469-185x.1999.tb00046.x
>Morris, S. C., & Robison, R. A. (1985). Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. ResearchGate. https://www.researchgate.net/publication/29444261_Middle_Cambrian_priapulids_and_other_soft-bodied_fossils_from_Utah_and_Spain
>Vannier, J. (2012). Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem. PLoS One, 7(12), e52200. https://doi.org/10.1371/journal.pone.0052200
>Bruton, D. L. (2001). A death assemblage of priapulid worms from the Middle Cambrian Burgess Shale. Lethaia, 34(2), 163–167. https://doi.org/10.1080/00241160152418456
>Trilobite Feeding. (n.d.). https://www.trilobites.info/feeding.htm
>Pappas, S. (2016, February 11). Trilobites Were Stone-Cold Killers. livescience.com. https://www.livescience.com/53682-trilobites-were-savvy-killers.html
>Selly, T., Huntley, J. W., Shelton, K. L., & Schiffbauer, J. D. (2016). Ichnofossil record of selective predation by Cambrian trilobites. Palaeogeography, Palaeoclimatology, Palaeoecology, 444, 28–38. https://doi.org/10.1016/j.palaeo.2015.11.033
>Foster, J. R., & Gaines, R. R. (2016). Taphonomy and paleoecology of the “middle” Cambrian (Series 3) formations in Utah’s West Desert: Recent finds and new data. ResearchGate. https://www.researchgate.net/publication/310951914_Taphonomy_and_paleoecology_of_the_middle_Cambrian_Series_3_formations_in_Utah's_West_Desert_Recent_finds_and_new_data
>Fenchel, T. (2011). Aquatic Sediments. Elsevier eBooks, 121–142. https://doi.org/10.1016/b978-0-12-415836-8.00007-4
>Trilobite Geological Time Scale. (n.d.). https://www.trilobites.info/geotime.htm
>Morris, S. C. (1985). The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, 307(1134), 507–582. https://doi.org/10.1098/rstb.1985.0005
>Smith, M. R. (2013). Ontogeny, morphology and taxonomy of the soft-bodied Cambrian ‘mollusc’ Wiwaxia. Palaeontology, 57(1), 215–229. https://doi.org/10.1111/pala.12063
>Smith, M. R. (2012). Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia : implications for the ancestral molluscan radula. Proceedings of the Royal Society B: Biological Sciences, 279(1745), 4287–4295. https://doi.org/10.1098/rspb.2012.1577
>Rich, V. I., & Maier, R. M. (2014). Aquatic Environments. Elsevier eBooks, 111–138. https://doi.org/10.1016/b978-0-12-394626-3.00006-5
>Frenkel, A., Zecharia, E., Gómez-Pérez, D., Sendersky, E., Yegorov, Y., Jacob, A., Benichou, J. I. C., Stierhof, Y., Parnasa, R., Golden, S. S., Kemen, E., & Schwarz, R. (2023). Cell specialization in cyanobacterial biofilm development revealed by expression of a cell-surface and extracellular matrix protein. Nature, 9(1). https://doi.org/10.1038/s41522-023-00376-6
>Penesyan, A., Paulsen, I. T., Kjelleberg, S., & Gillings, M. R. (2021). Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. Npj Biofilms and Microbiomes, 7(1). https://doi.org/10.1038/s41522-021-00251-2
>Zhang, W., Sun, J., Ding, W., Lin, J., Tian, R., Liang, L., Liu, X., Shen, X., & Qian, P. (2015). Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Frontiers in Cellular and Infection Microbiology, 5. https://doi.org/10.3389/fcimb.2015.00040
>Willey, J., Sandman, K., & Wood, D. (2022). ISE Prescott’s Microbiology.
>Volff, J. (2000). A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiology Letters, 186(2), 143–150. https://doi.org/10.1016/s0378-1097(00)00118-x
>Hörandl, E., & Speijer, D. (2018). How oxygen gave rise to eukaryotic sex. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172706. https://doi.org/10.1098/rspb.2017.2706
>Cooper, G. M. (2000). The Complexity of Eukaryotic Genomes. The Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK9846/
>Forsyth, N. R., Wright, W. E., & Shay, J. W. (2001). Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation, 69(4–5), 188–197. https://doi.org/10.1046/j.1432-0436.2002.690412.x
>Baird, D. (2006). Telomeres. Elsevier eBooks, 593–601. https://doi.org/10.1016/b0-12-370870-2/00185-2
are Naraoids trilobites? (n.d.). https://www.trilobites.info/naraoia.htm
>Wilmot, N. V., & Fallick, A. E. (1989). Original mineralogy of trilobite exoskeletons. Palaeontology, Vol. 32, Part 2, 297–304. https://www.palass.org/sites/default/files/media/publications/palaeontology/volume_32/vol32_part2_pp297-304.pdf
>Vannier, J., & Chen, J. (2002). Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia, 35(2), 107–120. https://doi.org/10.1111/j.1502-3931.2002.tb00072.x
>Tassia, M. G., Cannon, J. T., Konikoff, C., Shenkar, N., Halanych, K. M., & Swalla, B. J. (2016). The Global Diversity of Hemichordata. PLOS ONE, 11(10), e0162564. https://doi.org/10.1371/journal.pone.0162564
>Gilmour, T. H. J. (1979). Feeding in pterobranch hemichordates and the evolution of gill slits. Canadian Journal of Zoology, 57(5), 1136–1142. https://doi.org/10.1139/z79-143
>Sato, A., Rickards, B., & Holland, P. (2008). The origins of graptolites and other pterobranchs: a journey from ‘Polyzoa.’ Lethaia, 41(4), 303–316. https://doi.org/10.1111/j.1502-3931.2008.00123.x
>De Vivo, G., Lautenschlager, S., & Vinther, J. (2021). Three-dimensional modelling, disparity and ecology of the first Cambrian apex predators. Proceedings of the Royal Society B: Biological Sciences, 288(1955), 20211176. https://doi.org/10.1098/rspb.2021.1176
>Lerosey-Aubril, R., & Pates, S. (2018). New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06229-7
>De Baets, K., Budil, P., Fatka, O., & Geyer, G. (2021). Trilobites as hosts for parasites: From paleopathologies to etiologies. In Topics in geobiology (pp. 173–201). https://doi.org/10.1007/978-3-030-52233-9_6
>Rowley, A. F., & Coates, C. J. (2023). Shell disease syndromes of decapod crustaceans. Environmental Microbiology, 25(5), 931–947. https://doi.org/10.1111/1462-2920.16344
>Boraston, A., Van Bueren, A. L., Ficko-Blean, E., & Abbott, D. (2007). Carbohydrate–Protein interactions: Carbohydrate-Binding modules. In Elsevier eBooks (pp. 661–696). https://doi.org/10.1016/b978-044451967-2/00069-6
>Vincent, J. (2001). Cuticle. In Elsevier eBooks (pp. 1924–1928). https://doi.org/10.1016/b0-08-043152-6/00350-8
>Bengtson, S. (1976). The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9(2), 185–206. https://doi.org/10.1111/j.1502-3931.1976.tb00966.x
>Goldman, D., Sadler, P. M., Leslie, S. A., Melchin, M. J., Agterberg, F., & Gradstein, F. M. (2019). The Ordovician Period. Elsevier eBooks, 631–694. https://doi.org/10.1016/b978-0-12-824360-2.00020-6
>Buck, C. B., Van Doorslaer, K., Peretti, A., Geoghegan, E. M., Tisza, M. J., An, P., Katz, J. P., Pipas, J. M., McBride, A. A., Camus, A. C., McDermott, A. J., Dill, J. A., Delwart, E., Ng, T. F. F., Farkas, K., Austin, C., Kraberger, S., Davison, W., Pastrana, D., & Varsani, A. (2016). The Ancient Evolutionary History of Polyomaviruses. PLOS Pathogens, 12(4), e1005574. https://doi.org/10.1371/journal.ppat.1005574
>Torres, C. (2020). Evolution and molecular epidemiology of polyomaviruses. Infection, Genetics and Evolution, 79, 104150. https://doi.org/10.1016/j.meegid.2019.104150
>Marlétaz, F., Peijnenburg, K. T., Goto, T., Satoh, N., & Rokhsar, D. S. (2019). A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans. Current Biology, 29(2), 312-318.e3. https://doi.org/10.1016/j.cub.2018.11.042
>Pfennig, D., Ho, S., & Hoffman, E. (1998). Pathogen transmission as a selective force against cannibalism. Animal Behaviour, 55(5), 1255–1261. https://doi.org/10.1006/anbe.1997.9996
>Ortega-Cubero, S., Luquín, Domínguez, I., Arbizu, J., Pagola, I., Carmona-Abellán, M., & Riverol, M. (2013). Structural and functional neuroimaging in human prion diseases. Neurología (English Edition), 28(5), 299–308. https://doi.org/10.1016/j.nrleng.2011.03.012
>Under what conditions do fossils form? (2016, November 17). American Geosciences Institute. https://www.americangeosciences.org/education/k5geosource/content/fossils/under-what-conditions-do-fossils-form