Sources: Terror of Patagonia
*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Terror of Patagonia:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Miocene. (n.d.). http://www.scotese.com/miocene.htm
>Bucher, J., Pérez, M. E., Ruiz, L. R. G., D’Elía, L., & Bilmes, A. (2020). New middle Miocene (Langhian - Serravallian) vertebrate localities in northwestern Patagonia, Argentina: A contribution to high latitude south american land mammal ages sequence. Journal of South American Earth Sciences, 107, 103024. https://doi.org/10.1016/j.jsames.2020.103024
>Genise, J. F., Bellosi, E. S., Cantil, L. F., González, M. G., & Puerta, P. (2022). Middle Miocene Climate Transition as reflected by changes in ichnofacies and palaeosols from Patagonia, Argentina. Palaeogeography Palaeoclimatology Palaeoecology, 594, 110932. https://doi.org/10.1016/j.palaeo.2022.110932
>Scotese, C. R., Song, H., Mills, B. J. W., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503
>Kasbohm, J., & Schoene, B. (2018). Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat8223
>Rech, J. A., Currie, B. S., Shullenberger, E. D., Dunagan, S. P., Jordan, T. E., Blanco, N., Tomlinson, A. J., Rowe, H. D., & Houston, J. (2010). Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile. Earth and Planetary Science Letters, 292(3–4), 371–382. https://doi.org/10.1016/j.epsl.2010.02.004
>Barreda, V., Palazzesi, L., Pujana, R., Panti, C., Tapia, M., Fernández, D., & Noetinger, S. (2020). The Gondwanan heritage of the Eocene–Miocene Patagonian floras. Journal of South American Earth Sciences, 107, 103022. https://doi.org/10.1016/j.jsames.2020.103022
>Strömberg, C. A., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013). Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4(1), 1-8. https://doi.org/10.1038/ncomms2508
>Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P., & Richardson, D. M. (2017). Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews/Biological Reviews of the Cambridge Philosophical Society, 93(2), 1125–1144. https://doi.org/10.1111/brv.12388
>Nikolić, M., & Stevović, S. (2015). Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban Forestry & Urban Greening, 14(4), 782–789. https://doi.org/10.1016/j.ufug.2015.08.002
>Simpson, M. G. (2010). Plant systematics. Academic Press.
>AUGUST : tumbleweed : Salsola tragus. (2023, July 25). Santa Fe Botanical Garden. https://visitsfbg.org/plant-of-the-month-august-2023/
>Kessous, I. M., Neves, B., & Salgueiro, F. (2021). A 100-Million-Year Gap in the Knowledge of the Evolutionary History of Bromeliaceae: A Brief Review of Fossil Records. Feddes Repertorium, 132(1), 20-27. https://doi.org/10.1002/fedr.202000035
>Leroy, C., Gril, E., Ouali, L. S., Coste, S., Gérard, B., Maillard, P., Mercier, H., & Stahl, C. (2019). Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads. Environmental and Experimental Botany, 163, 112–123. https://doi.org/10.1016/j.envexpbot.2019.04.012
>Island Breeze Tropicals. (2023, September 29). Bromeliad Anatomy: What is a Trichome? [Video]. YouTube. https://www.youtube.com/watch?v=s12GcGSzTIk
>Benzing, D. H. (1979). BROMELIAD TRICHOMES: STRUCTURE, FUNCTION, AND ECOLOGICAL SIGNIFICANCE. Selbyana, 1(4), 330–348. https://journals.flvc.org/selbyana/article/view/120015/118103
>Püschel, H. P., Shelley, S. L., Williamson, T. E., Perini, F. A., Wible, J. R., & Brusatte, S. L. (2024). A new dentition-based phylogeny of Litopterna (Mammalia: Placentalia) and ‘archaic’ South American ungulates. Zoological Journal of the Linnean Society, 202(1). https://doi.org/10.1093/zoolinnean/zlae095
>Croft, D. A., Gelfo, J. N., & López, G. M. (2020). Splendid innovation: the extinct South American native ungulates. Annual Review of Earth and Planetary Sciences, 48(1), 259–290. https://doi.org/10.1146/annurev-earth-072619-060126
>Avilla, L. S., & Mothé, D. (2021). Out of Africa: A New Afrotheria Lineage Rises From Extinct South American Mammals. Frontiers in Ecology and Evolution, 9, 654302. https://doi.org/10.3389/fevo.2021.654302
>Uchytel, R., & Uchytel, A. (n.d.). Theosodon. Uchytel.com. https://uchytel.com/Theosodon
>Cassini, G. H., & Vizcaíno, S. F. (2011). An approach to the biomechanics of the masticatory apparatus of early miocene (Santacrucian Age) South American ungulates (Astrapotheria, Litopterna, and Notoungulata): Moment arm estimation based on 3D landmarks. Journal of Mammalian Evolution, 19(1), 9–25. https://doi.org/10.1007/s10914-011-9179-5
>Cassini, G. H. (2013). SKULL GEOMETRIC MORPHOMETRICS AND PALEOECOLOGY OF SANTACRUCIAN (LATE EARLY MIOCENE; PATAGONIA) NATIVE UNGULATES (ASTRAPOTHERIA, LITOPTERNA, AND NOTOUNGULATA). Ameghiniana. https://doi.org/10.5710/amgh.07.04.2013.606
>Croft, D. A., & Lorente, M. (2021). No evidence for parallel evolution of cursorial limb adaptations among Neogene South American native ungulates (SANUs). PLoS ONE, 16(8). https://doi.org/10.1371/journal.pone.0256371
>Zhang, Z., Gao, X., Dong, W., Huang, B., Wang, Y., Zhu, M., & Wang, C. (2022). Plant cell wall breakdown by Hindgut microorganisms: Can we get scientific insights from Rumen microorganisms? Journal of Equine Veterinary Science, 115, 104027. https://doi.org/10.1016/j.jevs.2022.104027
>Godoy-Vitorino, F., Goldfarb, K. C., Karaoz, U., Leal, S., Garcia-Amado, M. A., Hugenholtz, P., Tringe, S. G., Brodie, E. L., & Dominguez-Bello, M. G. (2012). Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. The ISME Journal, 6(3), 531-541. https://doi.org/10.1038/ismej.2011.131
>B. Harris, H. M., & Ross, R. P. (2017). Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. MicrobiologyOpen, 6(5). https://doi.org/10.1002/mbo3.509
>Davey, L., Halperin, S. A., & Lee, S. F. (2016). Thiol-Disulfide exchange in Gram-Positive Firmicutes. Trends in Microbiology, 24(11), 902–915. https://doi.org/10.1016/j.tim.2016.06.010
>Bollinger, R. R., Everett, M. L., Wahl, S. D., Lee, Y., Orndorff, P. E., & Parker, W. (2005). Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Molecular Immunology, 43(4), 378–387. https://doi.org/10.1016/j.molimm.2005.02.013
>León, E. D., & Francino, M. P. (2022). Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Frontiers in Microbiology, 13, 880484. https://doi.org/10.3389/fmicb.2022.880484
>Lima, M. T., Andrade, A. C. D. S. P., Oliveira, G. P., Nicoli, J. R., Martins, F. D. S., Kroon, E. G., & Abrahão, J. S. (2019). Virus and microbiota relationships in humans and other mammals: An evolutionary view. Human Microbiome Journal, 11, 100050. https://doi.org/10.1016/j.humic.2018.11.001
>Pfeiffer, J. K. (2010). Innate host barriers to viral trafficking and population diversity. Advances in Virus Research, 85–118. https://doi.org/10.1016/b978-0-12-385034-8.00004-1
>Iriarte, J., Ziegler, M. J., Outram, A. K., Robinson, M., Roberts, P., Aceituno, F. J., Morcote-Ríos, G., & Keesey, T. M. (2022). Ice Age megafauna rock art in the Colombian Amazon? Philosophical Transactions of the Royal Society B Biological Sciences, 377(1849). https://doi.org/10.1098/rstb.2020.0496
>Moyano, S. R., & Giannini, N. P. (2018). Cranial characters associated with the proboscis postnatal-development in Tapirus (Perissodactyla: Tapiridae) and comparisons with other extant and fossil hoofed mammals. Zoologischer Anzeiger, 277, 143–147. https://doi.org/10.1016/j.jcz.2018.08.005
>Frey, R., Volodin, I., & Volodina, E. (2007). A nose that roars: Anatomical specializations and behavioural features of rutting male saiga. Journal of Anatomy, 211(6), 717-736. https://doi.org/10.1111/j.1469-7580.2007.00818.x
>Fariña, R. A., Blanco, R. E., & Christiansen, P. (2005). Swerving as the escape strategy of Macrauchenia patachonica Owen (Mammalia; Litopterna). Ameghiniana, 42(4), 751–760. https://biblat.unam.mx/es/revista/ameghiniana/articulo/swerving-as-the-escape-strategy-of-macrauchenia-patachonica-owen-mammalia-litopterna
>Bertelli, S., Chiappe, L. M., & Tambussi, C. (2007). A new phorusrhacid (Aves: Cariamae) from the middle Miocene of Patagonia, Argentina. Journal of Vertebrate Paleontology, 27(2), 409–419. https://doi.org/10.1671/0272-4634(2007)27
>Silva, A. N., Nunes, R., Estrela, D. C., Malafaia, G., & Castro, A. L. S. (2016). Behavioral repertoire of the poorly known Red-legged Seriema, Cariama cristata (Cariamiformes: Cariamidae). Revista Brasileira De Ornitologia, 24(2), 73–79. https://doi.org/10.1007/bf03544333
>Degrange, F. J. (2020). A revision of skull morphology in Phorusrhacidae (Aves, Cariamiformes). Journal of Vertebrate Paleontology, 40(6), e1848855. https://doi.org/10.1080/02724634.2020.1848855
>Degrange, F. J., Tambussi, C. P., Moreno, K., Witmer, L. M., & Wroe, S. (2010). Mechanical Analysis of Feeding Behavior in the Extinct “Terror Bird” Andalgalornis steulleti (Gruiformes: Phorusrhacidae). PLoS ONE, 5(8). https://doi.org/10.1371/journal.pone.0011856
>Blanco, R. E., & Jones, W. W. (2005). Terror birds on the run: a mechanical model to estimate its maximum running speed. Proceedings of the Royal Society B Biological Sciences, 272(1574), 1769–1773. https://doi.org/10.1098/rspb.2005.3133
>King, L., & Barrick, R. (2016). Semicircular Canal Shape within Aves and Non-Avian Theropoda: Utilizing Geometric Morphometrics to Correlate Life History with Canal Cross-Sectional Shape. Conference: Society of Vertebrate Paleontology 76th Annual Meeting. https://www.researchgate.net/publication/319621275_Semicircular_Canal_Shape_within_Aves_and_Non-Avian_Theropoda_Utilizing_Geometric_Morphometrics_to_Correlate_Life_History_with_Canal_Cross-Sectional_Shape
>Scillato-Yané, G. J., & Carlini, A. A. (1998). [New Xenarthra from the Friasian (Middle Miocene) of Argentine. Stvdia Geologica Salmanticensia, 34(34), 43–67. https://core.ac.uk/download/pdf/9504358.pdf
>Gaudin, T. J., & Branham, D. G. (1998). The Phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the Relationship of Eurotamandua to the Vermilingua. Journal of Mammalian Evolution, 5(3), 237–265. https://doi.org/10.1023/a:1020512529767
>Natural History Collections: ANTEATERS. (n.d.). The University of Edinburgh. http://www.nhc.ed.ac.uk/index.php?page=493.500.501
>Padberg, J. (2016). Xenarthran nervous systems. In Elsevier eBooks (pp. 383–412). https://doi.org/10.1016/b978-0-12-804042-3.00053-1
>Jansen, A., Xavier, S., & Roque, A. (2017). Ecological aspects of Trypanosoma cruzi. In Elsevier eBooks (pp. 243–264). https://doi.org/10.1016/b978-0-12-801029-7.00011-3
>Ginsberg, J. R. (2013). Mammals, Biodiversity of. In Elsevier eBooks (pp. 681–707). https://doi.org/10.1016/b978-0-12-384719-5.00089-7
>Nygaard, S., Hu, H., Li, C., Schiøtt, M., Chen, Z., Yang, Z., Xie, Q., Ma, C., Deng, Y., Dikow, R. B., Rabeling, C., Nash, D. R., Wcislo, W. T., Brady, S. G., Schultz, T. R., Zhang, G., & Boomsma, J. J. (2016). Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nature Communications, 7(1), 1-9. https://doi.org/10.1038/ncomms12233
>Branstetter, M. G., Ješovnik, A., Sosa-Calvo, J., Lloyd, M. W., Faircloth, B. C., Brady, S. G., & Schultz, T. R. (2017). Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proceedings of the Royal Society B: Biological Sciences, 284(1852). https://doi.org/10.1098/rspb.2017.0095
>Boraston, A., Van Bueren, A. L., Ficko-Blean, E., & Abbott, D. (2007). Carbohydrate–Protein interactions: Carbohydrate-Binding modules. In Elsevier eBooks (pp. 661–696). https://doi.org/10.1016/b978-044451967-2/00069-6
>Vincent, J. (2001). Cuticle. In Elsevier eBooks (pp. 1924–1928). https://doi.org/10.1016/b0-08-043152-6/00350-8
>Calheiros, A. C., Ronque, M. U. V., & Oliveira, P. S. (2019). Social Organization and Subcaste Specialization in the Leaf-Cutting Ant Acromyrmex subterraneus (Formicidae: Myrmicinae). Journal of Insect Behavior, 32(4–6), 267–280. https://doi.org/10.1007/s10905-019-09729-6
>Ramalho, M. O., & Moreau, C. S. (2023). Untangling the complex interactions between turtle ants and their microbial partners. Animal Microbiome, 5(1). https://doi.org/10.1186/s42523-022-00223-7
>Powell, S., Price, S. L., & Kronauer, D. J. (2020). Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants. Proceedings of the National Academy of Sciences, 117(12), 6608-6615. https://doi.org/10.1073/pnas.1913750117
>Duplais, C., Massiot, D., Hassan, A., Perrone, B., Estevez, Y., Wertz, J. T., Martineau, E., Farjon, J., Giraudeau, P., & Moreau, C. S. (2021). Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nature Communications, 12(1), 1-6. https://doi.org/10.1038/s41467-021-21065-y
>Béchade, B., Cabuslay, C. S., Hu, Y., Mendonca, C. M., Hassanpour, B., Lin, J. Y., Su, Y., Fiers, V. J., Anandarajan, D., Lu, R., Olson, C. J., Duplais, C., Rosen, G. L., Moreau, C. S., Aristilde, L., Wertz, J. T., & Russell, J. A. (2023). Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. The ISME Journal, 17(10), 1751-1764. https://doi.org/10.1038/s41396-023-01490-1
>Dietrich, C. H. (2009). Auchenorrhyncha. In Elsevier eBooks (pp. 56–64). https://doi.org/10.1016/b978-0-12-374144-8.00015-1
>Hoy, R., & Yack, J. (2009). Hearing. In Elsevier eBooks (pp. 440–446). https://doi.org/10.1016/b978-0-12-374144-8.00125-9
>Hepler, J. R., Cooper, W. R., Cullum, J. P., Dardick, C., Dardick, L., Nixon, L. J., Pouchnik, D. J., Raupp, M. J., Shrewsbury, P., & Leskey, T. C. (2023). Do adult Magicicada (Hemiptera: Cicadidae) feed? Historical perspectives and evidence from molecular gut content analysis. Journal of Insect Science, 23(5). https://doi.org/10.1093/jisesa/iead082
>Challita, E. J., & Bhamla, M. S. (2024). Unifying fluidic excretion across life from cicadas to elephants. Proceedings of the National Academy of Sciences, 121(13), e2317878121. https://doi.org/10.1073/pnas.2317878121
>Uchytel, R., & Uchytel, A. (n.d.). Astrapotherium. Uchytel.com. https://uchytel.com/Astrapotherium
>Kramarz, A. G., & Bond, M. (2009). A new oligocene astrapothere (mammalia, meridiungulata) from patagonia and a new appraisal of astrapothere there phylogeny. Journal of Systematic Palaeontology, 7(1), 117–128. https://doi.org/10.1017/s147720190800268x
>Cassini, G. H., Vizcaíno, S. F., & Bargo, M. S. (2012). Body mass estimation in Early Miocene native South American ungulates: a predictive equation based on 3D landmarks. Journal of Zoology, 287(1), 53–64. https://doi.org/10.1111/j.1469-7998.2011.00886.x
>Khongdee, T., Sripoon, S., & Vajrabukka, C. (2011). The effects of high temperature and wallow on physiological responses of swamp buffaloes (Bubalus bubalis) during winter season in Thailand. Journal of Thermal Biology, 36(7), 417–421. https://doi.org/10.1016/j.jtherbio.2011.07.006
>Bracke, M. (2011). Review of wallowing in pigs: Description of the behaviour and its motivational basis. Applied Animal Behaviour Science, 132(1-2), 1-13. https://doi.org/10.1016/j.applanim.2011.01.002
>Hawkes, F. M., & Hopkins, R. J. (2021). The mosquito. In Routledge eBooks (pp. 16–31). https://doi.org/10.4324/9781003056034-3
>Chandel, A., DeBeaubien, N. A., Ganguly, A., Meyerhof, G. T., Krumholz, A. A., Liu, J., Salgado, V. L., & Montell, C. (2024). Thermal infrared directs host-seeking behaviour in Aedes aegypti mosquitoes. Nature, 633(8030), 615-623. https://doi.org/10.1038/s41586-024-07848-5
>Ziemer, T., Wetjen, F., & Herbst, A. (2022). The Antenna Base Plays a Crucial Role in Mosquito Courtship Behavior. Frontiers in Tropical Diseases, 3, 803611. https://doi.org/10.3389/fitd.2022.803611
>Gunter, N. L., Weir, T. A., Slipinksi, A., Bocak, L., & Cameron, S. L. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary? PLOS ONE, 11(5), e0153570. https://doi.org/10.1371/journal.pone.0153570
>Maldaner, M. E., Da Costa-Silva, V., & Vaz-De-Mello, F. Z. (2024). Dung beetles in South American pasturelands. Biota Neotropica, 24(1). https://doi.org/10.1590/1676-0611-bn-2023-1567
>Mariod, A. A., Mirghani, M. E. S., & Hussein, I. (2017). Copris nevinsoni Dung Beetle. In Elsevier eBooks (pp. 289–292). https://doi.org/10.1016/b978-0-12-809435-8.00043-3
>Szewc, M., De Waal, T., & Zintl, A. (2020). Biological methods for the control of gastrointestinal nematodes. The Veterinary Journal, 268, 105602. https://doi.org/10.1016/j.tvjl.2020.105602
>Forasiepi, A. M., & Carlini, A. A. (2010). A new thylacosmilid (Mammalia, Metatheria, Sparassodonta) from the Miocene of Patagonia, Argentina. Zootaxa, 2552(1). https://doi.org/10.11646/zootaxa.2552.1.3
>Gaillard, C., MacPhee, R. D. E., & Forasiepi, A. M. (2023). Seeing through the eyes of the sabertooth Thylacosmilus atrox (Metatheria, Sparassodonta). Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04624-5
>Vucetich, M., Arnal, M., Deschamps, C., & Pérez, M. (2015). A brief history of caviomoph rodents as told by the fossil record. Biology of Caviomorph Rodents: Diversity and Evolution. https://www.researchgate.net/publication/312489184_A_brief_history_of_caviomoph_rodents_as_told_by_the_fossil_record
>Temple-Smith, P. D., Ravichandran, A., & Nunez, F. E. H. (2018). Sperm: Comparative vertebrate. In Elsevier eBooks (pp. 210–220). https://doi.org/10.1016/b978-0-12-809633-8.20558-x
>Donnelly, T. M., & Quimby, F. W. (2002). Biology and diseases of other rodents. In Elsevier eBooks (pp. 247–307). https://doi.org/10.1016/b978-012263951-7/50010-7
>Gorog, T., & Myers, P. (n.d.). Erethizontidae (New World porcupines). Animal Diversity Web. https://animaldiversity.org/accounts/Erethizontidae/
>Vizcaíno, S. F., Fernicola, J. C., & Bargo, M. S. (2012). Paleobiology of Santacrucian glyptodonts and armadillos (Xenarthra, Cingulata). In Cambridge University Press eBooks (pp. 194–215). https://doi.org/10.1017/cbo9780511667381.013
>Greater long-nosed armadillo (Dasypus kappleri). (n.d.). IUCN SSC Anteater, Sloth and Armadillo Specialist Group. https://xenarthrans.org/species/armadillos-2/greater-long-nosed-armadillo-dasypus-kappleri/
>Chen, I. H., Kiang, J. H., Correa, V., Lopez, M. I., Chen, P., McKittrick, J., & Meyers, M. A. (2011). Armadillo armor: Mechanical testing and micro-structural evaluation. Journal of the Mechanical Behavior of Biomedical Materials/Journal of Mechanical Behavior of Biomedical Materials, 4(5), 713–722. https://doi.org/10.1016/j.jmbbm.2010.12.013
>Scarano, A. C., Vera, B., & Reguero, M. (2021). Evolutionary Trends of Protypotherium (Interatheriidae, Notoungulata) Lineage throughout the Miocene of South America. Journal of Mammalian Evolution, 28(3), 885–895. https://doi.org/10.1007/s10914-020-09534-5
>Costa, F. R., Moura, P. H. a. G., Da Rocha Alves-Júnior, S., Rosa, P. S., & Nunes, I. (2022). Acoustic analysis of vocalization and the behavioral response associated to sound production of the nine banded armadillo Dasypus novemcinctus (Mammalia, Cingulata, Dasypodidae) in an agonistic context. Papéis Avulsos De Zoologia, 62, e202262018. https://doi.org/10.11606/1807-0205/2022.62.018
>Melchionna, M., Profico, A., Castiglione, S., Serio, C., Mondanaro, A., Modafferi, M., Tamagnini, D., Maiorano, L., Raia, P., Witmer, L. M., Wroe, S., & Sansalone, G. (2021). A method for mapping morphological convergence on three-dimensional digital models: The case of the mammalian sabre-tooth. Palaeontology, 64(4), 573-584. https://doi.org/10.1111/pala.12542
>Gaunt, M., & Miles, M. (2000). The ecotopes and evolution of triatomine bugs (Triatominae) and their associated trypanosomes. Memórias Do Instituto Oswaldo Cruz, 95(4), 557–565. https://doi.org/10.1590/s0074-02762000000400019
>Monteiro, F. A., Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018). Evolution, systematics, and biogeography of the triatominae, vectors of Chagas disease. Advances in Parasitology/Advances in Parasitology, 265–344. https://doi.org/10.1016/bs.apar.2017.12.002
>Kostygov, A. Y., Karnkowska, A., Votýpka, J., Tashyreva, D., Maciszewski, K., Yurchenko, V., & Lukeš, J. (2021). Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biology, 11(3). https://doi.org/10.1098/rsob.200407
>Hamilton, P. B., Teixeira, M. M., & Stevens, J. R. (2012). The evolution of Trypanosoma cruzi: the ‘bat seeding’ hypothesis. Trends in Parasitology, 28(4), 136–141. https://doi.org/10.1016/j.pt.2012.01.006
>Zuma, A. A., Dos Santos Barrias, E., & De Souza, W. (2021). Basic Biology of Trypanosoma cruzi. Current Pharmaceutical Design, 27(14), 1671–1732. https://doi.org/10.2174/18734286mteydmdq2z
>Heddergott, N., Krüger, T., Babu, S. B., Wei, A., Stellamanns, E., Uppaluri, S., Pfohl, T., Stark, H., & Engstler, M. (2012). Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathogens, 8(11), e1003023. https://doi.org/10.1371/journal.ppat.1003023
>A., J., Santillán, M., & G., R. (2020). Motility patterns of Trypanosoma cruzi trypomastigotes correlate with the efficiency of parasite invasion in vitro. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-72604-4
>Bonney, K. M., Luthringer, D. J., Kim, S. A., Garg, N. J., & Engman, D. M. (2018). Pathology and pathogenesis of Chagas heart Disease. Annual Review of Pathology Mechanisms of Disease, 14(1), 421–447. https://doi.org/10.1146/annurev-pathol-020117-043711
>Teixeira, A. R. L., Hecht, M. M., Guimaro, M. C., Sousa, A. O., & Nitz, N. (2011). Pathogenesis of Chagas’ disease: parasite persistence and autoimmunity. Clinical Microbiology Reviews, 24(3), 592–630. https://doi.org/10.1128/cmr.00063-10
>Schaub, G. A. (2024). Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors—A Review. Microorganisms, 12(5), 855. https://doi.org/10.3390/microorganisms12050855
>Gracheva, E. O., Ingolia, N. T., Kelly, Y. M., Cordero-Morales, J. F., Hollopeter, G., Chesler, A. T., Sánchez, E. E., Perez, J. C., Weissman, J. S., & Julius, D. (2010). Molecular basis of infrared detection by snakes. Nature, 464(7291), 1006–1011. https://doi.org/10.1038/nature08943
>Scanferla, A., & Smith, K. T. (2020). Exquisitely Preserved Fossil Snakes of Messel: Insight into the Evolution, Biogeography, Habitat Preferences and Sensory Ecology of Early Boas. Diversity, 12(3), 100. https://doi.org/10.3390/d12030100
>Lawton, S. P., Hirai, H., Ironside, J. E., Johnston, D. A., & Rollinson, D. (2011). Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasites & Vectors, 4(1). https://doi.org/10.1186/1756-3305-4-131
>Lashaki, E. K., Teshnizi, S. H., Gholami, S., Fakhar, M., Brant, S. V., & Dodangeh, S. (2020). Global prevalence status of avian schistosomes: A systematic review with meta-analysis. Parasite Epidemiology and Control, 9, e00142. https://doi.org/10.1016/j.parepi.2020.e00142
>Reda, E. S., El-Shabasy, E. A., Said, A. E., Mansour, M. F. A., & Saleh, M. A. (2016). Cholinergic components of nervous system of Schistosoma mansoni and S. haematobium (Digenea: Schistosomatidae). Parasitology Research, 115(8), 3127–3137. https://doi.org/10.1007/s00436-016-5070-x
>Marlétaz, F., Peijnenburg, K. T., Goto, T., Satoh, N., & Rokhsar, D. S. (2019). A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans. Current Biology, 29(2), 312-318.e3. https://doi.org/10.1016/j.cub.2018.11.042
>Skelly, P. J., Da’dara, A. A., Li, X., Castro-Borges, W., & Wilson, R. A. (2014). Schistosome feeding and regurgitation. PLoS Pathogens, 10(8), e1004246. https://doi.org/10.1371/journal.ppat.1004246
>Beltran, S., & Boissier, J. (2008). Schistosome monogamy: who, how, and why? Trends in Parasitology, 24(9), 386–391. https://doi.org/10.1016/j.pt.2008.05.009
>Costain, A. H., MacDonald, A. S., & Smits, H. H. (2018). Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Frontiers in Immunology, 9, 424814. https://doi.org/10.3389/fimmu.2018.03042
>Walker, A. J. (2011). Insights into the functional biology of schistosomes. Parasites & Vectors, 4(1). https://doi.org/10.1186/1756-3305-4-203
>Carvalho, O. D. S., Coelho, P. M. Z., & Lenzi, H. L. (2008). Schistosoma mansoni & Esquistossomose: uma visão multidisciplinar. SciELO - Editora FIOCRUZ.
>Castillo, M. G., Humphries, J. E., Mourão, M. M., Marquez, J., Gonzalez, A., & Montelongo, C. E. (2019). Biomphalaria glabrata immunity: Post-genome advances. Developmental & Comparative Immunology, 104, 103557. https://doi.org/10.1016/j.dci.2019.103557