Sources: Unusual Titans
*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
Unusual Titans:
>Algol. (2020, January 4). History of the Earth [Video]. YouTube. https://www.youtube.com/watch?v=Q1OreyX0-fw
>Late Carboniferous. (n.d.). http://www.scotese.com/late.htm
>Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic Ice Age: An Evolving Paradigm. Annual Review of Earth and Planetary Sciences, 41(1), 629–656. https://doi.org/10.1146/annurev.earth.031208.100118
>Carpeton Morton, M. (2016, May 19). Lack of fungi did not lead to copious Carboniferous coal. https://www.earthmagazine.org/article/lack-fungi-did-not-lead-copious-carboniferous-coal
>Nelsen, M. P., DiMichele, W. A., Peters, S. E., & Boyce, C. K. (2016). Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences, 113(9), 2442–2447. https://doi.org/10.1073/pnas.1517943113
>Glasspool, I. J., Scott, A. C., Waltham, D., Pronina, N. V., & Shao, L. (2015). The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00756
>Cleal, C. J. (2020). Paleozoic Plants. Elsevier eBooks, 461–475. https://doi.org/10.1016/b978-0-12-409548-9.12050-0
>Feulner, G. (2017). Formation of most of our coal brought Earth close to global glaciation. Proceedings of the National Academy of Sciences of the United States of America, 114(43), 11333–11337. https://doi.org/10.1073/pnas.1712062114
>Lab VIII - Medullosans and Cycads (2). (n.d.). https://ucmp.berkeley.edu/IB181/VPL/MedCyc/MedCyc2.html
>Wilson, J. P., & Fischer, W. W. (2011). Geochemical Support for a Climbing Habit within the Paleozoic Seed Fern Genus Medullosa. International Journal of Plant Sciences, 172(4), 586–598. https://doi.org/10.1086/658929
>Simpson, M. G. (2009). Evolution and Diversity of Woody and Seed Plants. Elsevier eBooks, 129–162. https://doi.org/10.1016/b978-0-12-374380-0.50005-1
>DiMichele, W. A. (2014). Wetland-Dryland vegetational dynamics in the Pennsylvanian Ice Age tropics. International Journal of Plant Sciences, 175(2), 123–164. https://doi.org/10.1086/675235
>D’Antonio, M. P., & Boyce, C. K. (2020). Arborescent lycopsid periderm production was limited. New Phytologist, 228(2), 741–751. https://doi.org/10.1111/nph.16727
>Ruiz-Medrano, R., Xoconostle-Cázares, B., & Lucas, W. J. (2001). The phloem as a conduit for inter-organ communication. Current Opinion in Plant Biology, 4(3), 202–209. https://doi.org/10.1016/s1369-5266(00)00162-x
>Meseguer, J., Pérez-Grande, I., & Sanz-Andrés, A. (2012). Heat pipes. In Elsevier eBooks (pp. 175–207). https://doi.org/10.1533/9780857096081.175
>Wilson, J. P., Montañez, I. P., White, J. D., DiMichele, W. A., McElwain, J. C., Poulsen, C. J., & Hren, M. T. (2017). Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytologist, 215(4), 1333–1353. https://doi.org/10.1111/nph.14700
>Vilagrosa, A. A., Chirino, E. E., Peguero-Pina, J. J., Barigah, T. S. T. S., Cochard, H. H., & Gil-Pelegrin, E. E. (2012). Xylem cavitation and embolism in plants living in Water-Limited ecosystems. In Springer eBooks (pp. 63–109). https://doi.org/10.1007/978-3-642-32653-0_3
>Clack, J. A. (2012). Gaining ground: The Origin and Evolution of Tetrapods. Indiana University Press.
>Ruta, M., Coates, M. I., & Quicke, D. L. J. (2003). Early tetrapod relationships revisited. Biological Reviews, 78(2), 251–345. https://doi.org/10.1017/s1464793102006103
>Atkins, J. B., Reisz, R. R., & Maddin, H. C. (2019). Braincase simplification and the origin of lissamphibians. PLOS ONE, 14(3), e0213694. https://doi.org/10.1371/journal.pone.0213694
>Tizard, I. R. (2022). The evolution of the mammals and their immune systems. In Elsevier eBooks (pp. 3–13). https://doi.org/10.1016/b978-0-323-95219-4.00019-8
>Smithson, T. R., Carroll, R. L., Panchen, A. L., & Andrews, S. M. (1992). Westlothiana lizziae from the Viséan of East Kirkton, West Lothian, Scotland, and the amniote stem. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 84(3–4), 383–412. https://doi.org/10.1017/s0263593300006192
>Jeram, A. J. (1992). Scorpions from the Viséan of East Kirkton, West Lothian, Scotland, with a revision of the infraorder Mesoscorpionina. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 84(3–4), 283–299. https://doi.org/10.1017/s0263593300006106
>Fröbisch, N. B., Bickelmann, C., Olori, J. C., & Witzmann, F. (2015). Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development. Nature, 527(7577), 231–234. https://doi.org/10.1038/nature15397
>Li, L., Lü, L., Nadler, S. A., Gibson, D. I., Zhang, L., Chen, H., Zhao, W., & Guo, Y. (2018). Molecular Phylogeny and Dating Reveal a Terrestrial Origin in the Early Carboniferous for Ascaridoid Nematodes. Systematic Biology, 67(5), 888–900. Https://Doi.Org/10.1093/Sysbio/Syy018
>Jenner, R. (2007). Metazoan phylogeny. In Elsevier eBooks (pp. 17–40). https://doi.org/10.1016/b0-12-370878-8/00106-3
>Hofing, G. L., & Kraus, A. L. (1994). Arthropod and helminth parasites. In Elsevier eBooks (pp. 231–257). https://doi.org/10.1016/b978-0-12-469235-0.50017-8
>Basyoni, M. M. A., & Rizk, E. M. A. (2016). Nematodes ultrastructure: complex systems and processes. Journal of Parasitic Diseases, 40(4), 1130–1140. https://doi.org/10.1007/s12639-015-0707-8
>Koehler, S., Springer, A., Issel, N., Klinger, S., Wendt, M., Breves, G., & Strube, C. (2021). Ascaris suum Nutrient Uptake and Metabolic Release, and Modulation of Host Intestinal Nutrient Transport by Excretory-Secretory and Cuticle Antigens In Vitro. Pathogens, 10(11), 1419. https://doi.org/10.3390/pathogens10111419
>Milner, A. R., & Sequeira, S. E. K. (1992). The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 84(3–4), 331–361. https://doi.org/10.1017/s0263593300006155
>Jenkin, S., & Milsom, W. K. (2013). Expiration. Progress in Brain Research, 131–147. https://doi.org/10.1016/b978-0-444-63488-7.00008-2
>Ferry, L. A., & Hernandez, L. P. (2010). THE MUSCLES | Bony Fish Cranial Muscles. Elsevier eBooks, 463–470. https://doi.org/10.1016/b978-0-12-374553-8.00239-2
>Bertmar, G. (1962). Homology of Ear Ossicles. Nature, 193(4813), 393–394. https://doi.org/10.1038/193393a0
>Lipovsek, M., & Elgoyhen, A. B. (2023). The evolutionary tuning of hearing. Trends in Neurosciences, 46(2), 110–123. https://doi.org/10.1016/j.tins.2022.12.002
>Robinson, J., Ahlberg, P., & Koentges, G. (2005). The braincase and middle ear region of Dendrerpeton acadianum (Tetrapoda: Temnospondyli). Zoological Journal of the Linnean Society, 143(4), 577–597. https://doi.org/10.1111/j.1096-3642.2005.00156.x
>Maddin, H. C., & Anderson, J. G. C. (2012). Evolution of the Amphibian Ear with Implications for Lissamphibian Phylogeny: Insight Gained from the Caecilian Inner Ear. Fieldiana, 5, 59–76. https://doi.org/10.3158/2158-5520-5.1.59
>Davies, N. S., Garwood, R. J., McMahon, W. J., Schneider, J. W., & Shillito, A. P. (2021). The largest arthropod in Earth history: insights from newly discovered Arthropleura remains (Serpukhovian Stainmore Formation, Northumberland, England). Journal of the Geological Society, 179(3). https://doi.org/10.1144/jgs2021-115
>Falcon-Lang, H. J., Labandeira, C. C., & Kirk, R. (2015). HERBIVOROUS AND DETRITIVOROUS ARTHROPOD TRACE FOSSILS ASSOCIATED WITH SUBHUMID VEGETATION IN THE MIDDLE PENNSYLVANIAN OF SOUTHERN BRITAIN. PALAIOS, 30(3), 192–206. https://doi.org/10.2110/palo.2014.082
>Lhéritier, M., Edgecombe, G. D., Garwood, R. J., Buisson, A., Gerbe, A., Koch, N. M., Vannier, J., Escarguel, G., Adrien, J., Fernandez, V., Bergeret-Medina, A., & Perrier, V. (2024). Head anatomy and phylogenomics show the Carboniferous giant Arthropleura belonged to a millipede-centipede group. Science Advances. https://doi.org/adp6362
>Schneider, J. W., Lucas, S. G., Werneburg, R., & Rößler, R. (2010). Euramerican Late Pennsylvanian/Early Permian arthropleurid/tetrapod associations – implications for the habitat and paleobiology of the largest terrestrial arthropod. ResearchGate. https://www.researchgate.net/publication/257768383_Euramerican_Late_PennsylvanianEarly_Permian_arthropleuridtetrapod_associations_-_implications_for_the_habitat_and_paleobiology_of_the_largest_terrestrial_arthropod
>Dunne, E., Close, R. A., Button, D., Brocklehurst, N., Cashmore, D. D., Lloyd, G. T., & Butler, R. J. (2018). Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse.’ Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172730. https://doi.org/10.1098/rspb.2017.2730
>Verberk, W. C. E. P., & Atkinson, D. (2013). Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Functional Ecology, 27(6), 1275–1285. https://doi.org/10.1111/1365-2435.12152
>Painter, D. (2012, June 10). How do insects breathe? https://askabiologist.asu.edu/how-insects-breathe
>Hilken, G., Rosenberg, J., Edgecombe, G. D., Blüml, V., Hammel, J. U., Hasenberg, A., & Sombke, A. (2020). The tracheal system of scutigeromorph centipedes and the evolution of respiratory systems of myriapods. Arthropod Structure & Development, 60, 101006. https://doi.org/10.1016/j.asd.2020.101006
>Matthews, P. G. D., & Terblanche, J. S. (2014). Evolution of the Mechanisms Underlying Insect Respiratory Gas Exchange. Advances in Insect Physiology, 1–24. https://doi.org/10.1016/bs.aiip.2015.06.004
>Harrison, J. F. (2008). Tracheal System. Elsevier eBooks, 1011–1015. https://doi.org/10.1016/b978-0-12-374144-8.00265-4
>Wirkner, C. S., & Prendini, L. (2006). Comparative morphology of the hemolymph vascular system in scorpions–A survey using corrosion casting, MicroCT, and 3D-reconstruction. Journal of Morphology, 268(5), 401–413. https://doi.org/10.1002/jmor.10512
>Spacht, D. E., & Gefen, E. (2022). Interspecific Variation in Oxygen‐Binding Properties of Scorpion Hemocyanin. The FASEB Journal, 36(S1). https://doi.org/10.1096/fasebj.2022.36.s1.l7471
>Monahan-Earley, R. A., Dvorak, A. M., & Aird, W. C. (2013). Evolutionary origins of the blood vascular system and endothelium. Journal of Thrombosis and Haemostasis, 11, 46–66. https://doi.org/10.1111/jth.12253
>Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., Frandsen, P. B., Ware, J. L., Flouri, T., Beutel, R. G., Niehuis, O., Petersen, M., Izquierdo-Carrasco, F., Wappler, T., Rust, J., Aberer, A. J., Aspöck, H., Aspöck, H., Bartel, D., . . . Kjer, K. M. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763–767. https://doi.org/10.1126/science.1257570
>Schachat, S. R., Labandeira, C. C., Saltzman, M. R., Cramer, B. D., Payne, J. L., & Boyce, C. K. (2018). Phanerozoic pO2 and the early evolution of terrestrial animals. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172631. https://doi.org/10.1098/rspb.2017.2631
>Cai, C., Tihelka, E., Giacomelli, M., Lawrence, J. F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M. K., Newton, A. F., Leschen, R. a. B., Gimmel, M. L., Lü, L., Engel, M. S., Bouchard, P., Huang, D., Pisani, D., & Donoghue, P. C. J. (2022). Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9(3). https://doi.org/10.1098/rsos.211771
>Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J. M., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., . . . Niehuis, O. (2017). Evolutionary History of the Hymenoptera. Current Biology, 27(7), 1013–1018. https://doi.org/10.1016/j.cub.2017.01.027
>Husby, C., & Walkowiak, R. (2012). An Introduction to the Genus Equisetum (Horsetail) and the Class Equisetopsida (Sphenopsida) as a whole. ResearchGate. https://doi.org/10.13140/RG.2.2.11669.52961
>Porro, L. B., Rayfield, E. J., & Clack, J. A. (2022). Computed tomography and three-dimensional reconstruction of the skull of the stem tetrapod Crassigyrinus scoticus Watson, 1929. Journal of Vertebrate Paleontology, 42(4). https://doi.org/10.1080/02724634.2023.2183134
>On the amphibian Crassigyrinus scoticus watson from the carboniferous. (1985). Philosophical Transactions of the Royal Society of London, 309(1140), 505–568. https://doi.org/10.1098/rstb.1985.0095
>Dick, J. R. F. (1977). On the Carboniferous shark Tristychius arcuatus Agassiz from Scotland. Transactions of the Royal Society of Edinburgh, 70(4), 63–108. https://doi.org/10.1017/s0080456800012898
>G. Maisey, J. (1978, July). Growth and form of finspines in hybodont sharks | The Palaeontological Association. https://www.palass.org/publications/palaeontology-journal/archive/21/3/article_pp657-666
>American Association for the Advancement of Science. (2021, May 6). High-performance suction feeding in an early elasmobranch. Science Advances. https://www.science.org/doi/10.1126/sciadv.aax2742
>Coates, M. I., & Gess, R. W. (2007). A NEW RECONSTRUCTION OF ONYCHOSELACHE TRAQUAIRI, COMMENTS ON EARLY CHONDRICHTHYAN PECTORAL GIRDLES AND HYBODONTIFORM PHYLOGENY. Palaeontology, 50(6), 1421–1446. https://doi.org/10.1111/j.1475-4983.2007.00719.x
>Tetlie, O. E. (2008). Hallipterus excelsior, a Stylonurid (Chelicerata: Eurypterida) from the Late Devonian Catskill Delta Complex, and Its Phylogenetic Position in the Hardieopteridae. BioOne Complete. https://doi.org/10.3374/0079-032X(2008)49
>Hughes, E. S., & Lamsdell, J. C. (2020). Discerning the diets of sweep-feeding eurypterids: assessing the importance of prey size to survivorship across the Late Devonian mass extinction in a phylogenetic context. Paleobiology, 47(2), 271–283. https://doi.org/10.1017/pab.2020.18
>Lamsdell, J. C., & Braddy, S. J. (2009). Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters, 6(2), 265–269. https://doi.org/10.1098/rsbl.2009.0700